مقایسه‌ی عملکرد الگوریتم‌های نزدیکترین همسایه و ماشین بردار پشتیبان برای پیش‌بینی سرطان سینه در زنان فعال

نوع مقاله : Original Article(s)

نویسندگان

1 دانشجو دکتری فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکده‌ی علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد فیزیولوژی ورزش، گروه تربیت بدنی و علوم ورزشی، دانشکده‌ی علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار، گروه فیزیولوژی، دانشکده‌ی علوم پزشکی، دانشگاه گرانادا، گرانادا، اسپانیا

10.48305/jims.v43.i833.1213

چکیده

مقاله پژوهشی




مقدمه: سرطان سینه، جزء سرطان‌های شایع زنان است که تشخیص بموقع آن در ادامه حیات و درمان نقش مهمی دارد. یادگیری ماشینی پتانسیل پیش‌بینی سرطان سینه را بر اساس ویژگی‌های پنهان در داده‌ها دارد. هدف اصلی این مطالعه، پیش‌بینی سرطان سینه با استفاده از الگوریتم‌های نزدیک‌ترین همسایه و ماشین بردار پشتیبان در زنان فعال بود.
روش‌ها: در این مطالعه‌ی توسعه‌ای- کاربردی جمع‌آوری داده‌ها مربوط به تعداد 641 پرونده متعلق به بیماران مبتلا به سرطان سینه از بیمارستان‌های امام خمینی و پژوهشکده سرطان معتمد، طی سال‌های 1403-1393 در محدوده‌ی سنی 25 تا 75 سال بود، پس از پیش پردازش اولیه در مجموعه داده‌ها، الگوریتم‌های نزدیک‌ترین همسایه و ماشین بردار پشتیبان به کار گرفته شدند.
یافته‌ها: نتایج نشان داد که الگوریتم ماشین بردار پشتیبان با دقت 87/2 درصد و صحت 86/35، حساسیت 86/88 درصد، تشخیص‌پذیری 85/68، عملکرد بهتری نسبت به الگوریتم نزدیک‌ترین همسایه برای پیش‌بینی سرطان سینه در زنان فعال داشت.
نتیجه‌گیری: با استفاده از الگوریتم‌های داده‌کاوی می‌توان سیستم‌های نوینی برای کمک به پزشکان طراحی نمود که موجب تسهیل در فرایندهای تشخیصی و درمانی شود. ترکیب عوامل خطر متعدد در مدل‌سازی برای پیش‌بینی سرطان سینه می‌تواند به تشخیص زودهنگام بیماری کمک کند.

تازه های تحقیق

لیلا فصیحی:  Google Scholar 

حمید آقاعلی نژاد: Google Scholar 

رضا قراخانلو:  Google Scholar 

فرانسیسکو خوزه آمارو گهیتی:  Google Scholar 

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of the Performance of Nearest Neighbor and Support Vector Machine Algorithms for Breast Cancer Prediction in Active Women

نویسندگان [English]

  • Leila Fasihi 1
  • Hamid Agha-Alinejad 2
  • Reza Gharakhanlou 2
  • Francisco J. Amaro Gahete 3
1 PhD Student of Exercise Physiology, Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
2 Professor of Exercise Physiology, Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
3 Associate Professor, Department of Physiology, Faculty of Medical Sciences, University of Granada, Granada, Spain
چکیده [English]

Background: Breast cancer is one of the most common cancers in women, and its timely diagnosis plays an important role in survival and treatment. Machine learning has the potential to predict breast cancer based on hidden features in the data. The main objective of this study was to predict breast cancer in active women using Nearest Neighbor and Support Vector Machine algorithms.
Methods: In this developmental-applied study, data were collected from the medical records of 641 breast cancer patients at Imam Khomeini Hospital and the Motamed Cancer Research Institute between 2014 and 2024, within the age range of 25 to 75 years. After initial preprocessing of the dataset, the Nearest Neighbor and Support Vector Machine algorithms were applied.
Findings: The results showed that the Support Vector Machine algorithm performed better than the Nearest Neighbor algorithm for predicting breast cancer in active women, with an accuracy of 87.2%, a precision of 86.35%, a sensitivity of 88.86%, and a specificity of 68.85%.
Conclusion: Data mining algorithms can be used to design novel systems that assist physicians in facilitating diagnostic and therapeutic processes. Combining multiple risk factors in modeling for breast cancer prediction can help in the early diagnosis of the disease.

کلیدواژه‌ها [English]

  • Breast cancer
  • Nearest neighbor
  • Support vector machine
  • Women
  • Prediction
  1. Pancholi S, Wachs JP, Duerstock BS. Use of artificial intelligence techniques to assist individuals with physical disabilities. Annu Rev Biomed Eng 2024; 26(1): 1-24.
  2. Justiz-Vaillant A, Gardiner L, Mohammed M, Surajbally M, Maharaj L, Ramsingh L, et al. Narrative Literature Review on Risk Factors Involved In Breast Cancer, Brain Cancer, Colon Rectal Cancer, Gynecological Malignancy, Lung Cancer, and Prostate Cancer. Preprints 2021; 2021040334.
  3. Marino P, Mininni M, Deiana G, Marino G, Divella R, Bochicchio I, et al. Healthy lifestyle and cancer risk: modifiable risk factors to prevent cancer. Nutrients 2024; 16(6): 800.
  4. Miyamoto T, Nagao A, Okumura N, Hosaka M. Effect of post-diagnosis physical activity on breast cancer recurrence: a systematic review and meta-analysis. Curr Oncol Rep 2022; 24(11): 1645-59.
  5. Abu Bashar MD, Begam N. Breast cancer surpasses lung cancer as the most commonly diagnosed cancer worldwide. Indian J Cancer 2022; 59(3): 438-9.
  6. Kazeminia M, Salari N, Hosseinian-Far A, Akbari H, Bazrafshan M-R, Mohammadi M. The prevalence of breast cancer in Iranian women: a systematic review and meta-analysis. Indian Journal of Gynecologic Oncology 2022; 20(1): 14.
  7. Alizadeh M, Ghojazadeh M, Piri R, Mirza-Aghazadeh-Attari M, Mohammadi S, Naghavi-Behzad M. Age at diagnosis of breast cancer in Iran: a systematic review and meta-analysis. Iran J Public Health 2021; 50(8): 1564-76.
  8. Zaylaa AJ, Kourtian S. Advancing Breast Cancer Diagnosis through Breast Mass Images, Machine Learning, and Regression Models. Sensors (Basel) 2024; 24(7): 2312.
  9. Faruk M. Breast cancer resistance to chemotherapy: When should we suspect it and how can we prevent it? Ann Med Surg (Lond) 2021; 70: 102793.
  10. Mohanty SS, Mohanty PK. Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis 2021; 8(2): 117-23.
  11. Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Prog Mol Biol Transl Sci 2022; 190(1): 57-100.
  12. Moreno Gutiérrez S. ATOPE+: Supporting Personalized Exercise Interventions in Breast Cancer Care using Mobile Technologies and Machine Learning. [Thesis]. Department of Computer Architecture and Technology University of Granada; 2022.
  13. Mokoatle M, Marivate V, Mapiye D, Bornman R, Hayes VM. A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application. BMC Bioinformatics 2023; 24(1): 112.
  14. Pal Choudhury P, Wilcox AN, Brook MN, Zhang Y, Ahearn T, Orr N, et al. Comparative validation of breast cancer risk prediction models and projections for future risk stratification. J Natl Cancer Inst 2020; 112(3): 278-85.
  15. Bula A, Tatar K, Wysocka R, Chyrek K, Piejko L, Nawrat-Szołtysik A, et al. Effect of physical activity on static and dynamic postural balance in women treated for breast cancer: A systematic review. Int J Environ Res Public Health 2023; 20(4): 3722.
  16. Bansal M, Goyal A, Choudhary A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. Decision Analytics Journal 2022; 3: 100071.
  17. Egwom OJ, Hassan M, Tanimu JJ, Hamada M, Ogar OM. An LDA–SVM machine learning model for breast cancer classification. BioMedInformatics 2022; 2(3): 345-58.
  18. Assegie TA. An optimized K-Nearest Neighbor based breast cancer detection. J Robot Control 2021; 2(3): 115-8.
  19. Naji MA, El Filali S, Aarika K, Benlahmar EH, Abdelouhahid RA, Debauche O. Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Computer Science 2021; 191: 487-92.
  20. Al-Quraishi T, Abawajy JH, Chowdhury MU, Rajasegarar S, Abdalrada AS. Breast cancer recurrence prediction using random forest model. Recent Advances on Soft Computing and Data Mining: Proceedings of the 3rd International Conference on Soft Computing and Data Mining (SCDM 2018), Johor, Malaysia, February 06-07, 2018.
  21. Afshar HL, Jabbari N, Khalkhali HR, Esnaashari O. Prediction of breast cancer survival by machine learning methods: An application of multiple imputation. Iran J Public Health 2021; 50(3): 598-605.
  22. Bagherian H, Haghjoo S, Mosayebi A, Arabzades S, Sharifi M, Sattari M. Identification of Effective Factors in Breast Cancer Survival in Isfahan Using Machine Learning Techniques. J Adv Med Biomed Res 2024; 32(154): 350-60.
  23. Li Y, Chen Z. Performance evaluation of machine learning methods for breast cancer prediction. Appl Comput Math 2018; 7(4): 212-6.
  24. Zhang D, Zou L, Zhou X, He F. Integrating feature selection and feature extraction methods with deep learning to predict clinical outcome of breast cancer. Ieee Access 2018; 6: 28936-44.
  25. Fogliatto FS, Anzanello MJ, Soares F, Brust-Renck PG. Decision support for breast cancer detection: classification improvement through feature selection. Cancer Control 2019; 26(1): 1073274819876598.
  26. Pudjihartono N, Fadason T, Kempa-Liehr AW, O'Sullivan JM. A review of feature selection methods for machine learning-based disease risk prediction. Front Bioinform 2022; 2: 927312.
  27. Singh LK, Khanna M, Singh R. Efficient feature selection for breast cancer classification using soft computing approach: A novel clinical decision support system. Multimed Tools Appl 2024; 83(14): 43223-76.
  28. Singh LK, Khanna M, Singh R. An enhanced soft-computing based strategy for efficient feature selection for timely breast cancer prediction: Wisconsin Diagnostic Breast Cancer dataset case. ultimed Tools Appl 2024; 83: 76607–72.
  29. Pérez NP, López MAG, Silva A, Ramos I. Improving the Mann–Whitney statistical test for feature selection: An approach in breast cancer diagnosis on mammography. Artif Intell Med 2015; 63(1): 19-31.