نوع مقاله : Original Article(s)
نویسندگان
1 دانشجو دکتری فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکدهی علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران
2 استاد فیزیولوژی ورزش، گروه تربیت بدنی و علوم ورزشی، دانشکدهی علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران
3 دانشیار، گروه فیزیولوژی، دانشکدهی علوم پزشکی، دانشگاه گرانادا، گرانادا، اسپانیا
چکیده
تازه های تحقیق
لیلا فصیحی: Google Scholar
حمید آقاعلی نژاد: Google Scholar
رضا قراخانلو: Google Scholar
فرانسیسکو خوزه آمارو گهیتی: Google Scholar
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Background: Breast cancer is one of the most common cancers in women, and its timely diagnosis plays an important role in survival and treatment. Machine learning has the potential to predict breast cancer based on hidden features in the data. The main objective of this study was to predict breast cancer in active women using Nearest Neighbor and Support Vector Machine algorithms.
Methods: In this developmental-applied study, data were collected from the medical records of 641 breast cancer patients at Imam Khomeini Hospital and the Motamed Cancer Research Institute between 2014 and 2024, within the age range of 25 to 75 years. After initial preprocessing of the dataset, the Nearest Neighbor and Support Vector Machine algorithms were applied.
Findings: The results showed that the Support Vector Machine algorithm performed better than the Nearest Neighbor algorithm for predicting breast cancer in active women, with an accuracy of 87.2%, a precision of 86.35%, a sensitivity of 88.86%, and a specificity of 68.85%.
Conclusion: Data mining algorithms can be used to design novel systems that assist physicians in facilitating diagnostic and therapeutic processes. Combining multiple risk factors in modeling for breast cancer prediction can help in the early diagnosis of the disease.
کلیدواژهها [English]