ساخت و ارزیابی نانوداربست کتیرا/ پلی کاپرولاکتان غنی شده با سیلیمارین، حاوی سلول‌های دندانی جهت کاربرد در مهندسی بافت

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زیست‌شناسی، دانشکده‌ی علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار، گروه زیست‌شناسی، دانشکده‌ی علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استاد، گروه زیست‌شناسی، دانشکده‌ی علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشیار، گروه بیوفیزیک، دانشکده‌ی فناوری‫های نوین، دانشگاه محقق اردبیلی، اردبیل، ایران‬‬‬‬

چکیده

مقاله پژوهشی




مقدمه: مهندسی بافت، مجموعه‌ای از روش‌هایی است که می‌تواند بافت‌های آسیب دیده را با بافت طبیعی یا مصنوعی جایگزین یا ترمیم کند. کتیرا، یک پلیمر طبیعی است که خواص بیولوژیکی عالی مانند تجزیه‌ی زیستی و توانایی زیست‌سازگاری دارد. سیلیمارین از نظر بیوشیمیایی دارای خواص پاک‌کننده و آنتی‌اکسیدانی است و همچنین اثرات ضد التهابی دارد. هدف از این مطالعه، تولید نانوداربست پلی کاپرولاکتان (Polycaprolactone) PCL /کتیرا/ سیلیمارین و بررسی زیست سازگاری سلول‌های دندانی بر روی آن می‌باشد.
روش‌ها: به منظور تهیه‌ی نانوداربست پلی کاپرولاکتان/کتیرا و بارگذاری سیلیمارین بر روی آن، محلول پلی‌کاپرولاکتان 7 درصد (حل شده در استیک اسید)، محلول کتیرا
7/0 درصد وزنی و محلول سیلیمارین با غلظت 0/9 درصد وزنی مخلوط شد، سپس توسط دستگاه الکتروریسی داربست تهیه شد. مورفولوژی داربست توسط میکروسکوب الکترونی روبشی (Scanning electron microscope) SEM و ساختار شیمیایی داربست توسط طیف‌سنجی FTIR مورد ارزیابی قرار گرفت.
یافته‌ها: بررسی مورفولوژی داربست و ساختار شیمیایی آن نشان‌دهنده‌ی تخلخل مناسب داربست پلی کاپرولاکتان و بارگذاری موفق سیلیمارین بر روی داربست بود. زیست سازگاری داربست 24، 48 و 72 ساعت بعد از کشت سلول‌های دنتال مورد بررسی قرار گرفت که نتایج نشان‌دهنده افزایش زنده‌مانی سلول‌ها و اتصال مناسب سلول‌ها بر روی داربست بود.
نتیجه‌گیری: نتایج حاصل از این پژوهش نشان داد که بارگذاری سیلیمارین بر روی داربست پلی کاپرولاکتان/کتیرا باعث افزایش توان تکثیر و زنده‌مانی سلول‌های دندانی می‌شود. از این‌رو این داربست می‌تواند کاندید مناسبی برای مهندسی بافت باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fabrication and Evaluation of Silymarin-Enriched Tragacanth / Polycaprolactone Nanoscaffold Containing Dental Cells for Use in Tissue Engineering

نویسندگان [English]

  • Reza Najafi 1
  • Asadollah Asadi 2
  • Saber Zahri 3
  • Arash Abdolmaleki 4
1 PhD Candidate, Department of Biology, School of Science, University of Mohaghegh Ardabili, Ardabil, Iran
2 Associate professor, Department of Biology, School of Science, University of Mohaghegh Ardabili, Ardabil, Iran
3 Professor, Department of Biology, School of Science, University of Mohaghegh Ardabili, Ardabil, Iran
4 Associate professor, Department of Biophysics, School of Advanced Technologies, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Background: Tissue engineering is a set of methods that can replace or repair damaged tissues with natural or artificial tissue. Tragacanth is a natural polymer that has excellent biological properties such as biodegradability and biocompatibility. Silymarin biochemically has cleansing and antioxidant properties and also has anti-inflammatory effects. The aim of this study is the production of polycaprolactone (PCL) / tragacanth / silymarin nanoscaffold and to investigate the biocompatibility of dental cells on it.
Methods: To create a polycaprolactone /tragacanth nanoscaffold and add silymarin to it, acetic acid was used to dissolve 7 percent of the polycaprolactone, 0.7 weight percent of the tragacanth solution, and 0.9 percent of the silymarin solution. The scaffold was then created using an electrospinning machine. Scanning electron microscope (SEM) analysis and FTIR analysis were used to analyze the scaffold's chemical structure and shape, respectively.
Findings: The scaffold's correct porosity and the successful loading of silymarin on it were revealed by analyzing the scaffold's morphology and chemical composition. The biocompatibility of the scaffold was investigated 24, 48 and 72 hours after the cultivation of dental cells, and the results showed an increase in cell viability and proper attachment of cells on the scaffold.
Conclusion: The findings of this study demonstrated that silymarin loading on the polycaprolactone/catira scaffold improves dental cell proliferation and survival. This scaffold may therefore be a good choice for tissue engineering.

کلیدواژه‌ها [English]

  • Polycaprolactone
  • Silymarin
  • Tissue engineering
  • Tragacant
  • Electrospinning
  • Dental cells
  1. Neamnark A, Sanchavanakit N, Pavasant P, Rujiravanit R, Supaphol P. In vitro biocompatibility of electrospun hexanoyl chitosan fibrous scaffolds towards human keratinocytes and fibroblasts. Eur Polym 2008; 44(7): 2060-7.
  2. Abdelhady S, Honsy KM, Kurakula M. Electro spun-nanofibrous mats: a modern wound dressing matrix with a potential of drug delivery and therapeutics.
    J Eng Fibers Fabrics 2015; 10(4): 179-93.
  3. Gouda M, Hebeish A, Aljafari AL. Synthesis and char-acterization of novel drug delivery system based on cellu-lose acetate electrospun nanofiber mats.
    J Ind Textile 2014; 43(3): 319-29.
  4. Nawalakhe RG, Hudson SM, Mohamed Seyam AF, Waly AI, Abou-Zeid NY, Ibrahim HM. Development of electrospun iminochitosan for improved wound healing application. J Eng Fibers Fabrics 2012; 7(2): 47-55.
  5. Han X, Xing Z, Si S, Yao Y, Zhang Q. Electrospun grape seed polyphe-nols/gelatin composite fibers contained silver nanoparticles as biomaterials. Fibers Polym 2014; 15(12): 2572-80.
  6. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
  7. Arca HC, Senel S. Chitosan based systems for tissue engineering part 1: hard tissues. FABAD J Pharmaceut Sci 2008; 33(1): 35-49.
  8. Rawdkuen S, Thitipramote N, Benjakul S. Preparation and functional characterisation of fish skin gelatin and com-parison with commercial gelatin. Food Sci Tech Int 2013; 48(5): 1093-102.
  9. Nikoo M, Benjakul S, Ocen D, Yang N, Xu B, Zhang L, et al. Physical and chemical properties of gelatin from the skin of cultured Amur stur-geon. J Appl Ichthyol 2013; 29(5): 943-50.
  10. Chambers CS, Holečková V, Petrásková L, Biedermann D, Valentová K, Buchta M, et al. The silymarin composition… and why does it matter. Food Res Int 2017; 100: 339-53.
  11. Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 2015; 4: 204-47.
  12. Lovelace ES, Wagoner J, MacDonald J, Bammler T, Bruckner J, Brownell J, et al. Silymarin suppresses cellular inflammation by inducing reparative stress signaling. J Nat Prod 2015; 78(8): 1990-2000.
  13. Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)-chemistry, bioavailability, and metabolism. Molecules 2017; 22(11): 1942.
  14. Kren V, Walterová D. Silybin and silymarin--new effects and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149(1): 29-41.
  15. Wellington K, Jarvis B. Silymarin: a review of its
    clinical properties in the management of hepatic disorders. BioDrugs 2001; 15: 465-89.
  16. Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Altern Med Rev 2011; 16(3): 239-49.
  17. Gillessen A, Schmidt HH. Silymarin as supportive treatment in liver diseases: a narrative review. Adv Ther 2007; 37(4): 1279-301.
  18. Sobolová L, Škottová N, Večeřa R, Urbánek K. Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacol Res 2006; 53(2):104-12.
  19. Poruba M, Kazdová L, Oliyarnyk O, Malinská H, Matusková Z, Di Angelo IT, et al. Improvement bioavailability of silymarin ameliorates severe dyslipidemia associated with metabolic syndrome. Xenobiotica 2015; 45(9):751-6.
  20. Tuorkey MJ, El-Desouki NI, Kamel RA. Cytoprotective effect of silymarin against diabetes-induced cardiomyocyte apoptosis in diabetic rats. Biomed Environ Sci 2015; 28(1): 36-43.
  21. Wang TT, Phang JM. Effects of estrogen on apoptotic pathways in human breast cancer cell line MCF-7. Cancer Res 1995; 55(12): 2487-9.
  22. Kwon TW, Watts BM. Malonaldehyde in aqueous solution and its, role as a measure of lipid oxidation in foods. J Food Sci 2006; 29(3): 294-302.
  23. Pandi M, Kumaran RS, Choi YK, Kim HJ, Muthumary J. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. African J Biotechnology 2011; 10(8): 1428-35.
  24. Takashima Y, Saito R, Nakajima A, Oda M, Kimura A, Kanazawa T, et al. Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int J Pharm 2007; 343(1-2): 262-9.
  25. Abbaszadeh S, Asadi A, Zahri S, Abdolmaleki A, Mahmoudi F. Does phenytoin have neuroprotective role and affect biocompatibility of decellularized sciatic nerve scaffold? J Gene Cell and Tissue 2021; 8(1): e108726.
  26. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007; 59(14): 1413-33.
  27. Kumar G, Waters MS, Farooque TM, Young MF, Simon Jr CG. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials 2012; 33(16): 4022-30.
  28. Ranjbar-Mohammadi M, Bahrami SH, Joghataei MT. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly (vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties. Mater Sci Eng C Mater Biol Appl 2013; 33(8): 4935-43.‏
  29. Christy PN, Basha SK, Kumari VS, Bashir AKH, Maaza M, Kaviyarasu K, et al. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications-A review. J Drug Deliv Sci Technol 2020; 55: 101452.
  30. Nasrollahi Nia F, Asadi A, Zahri S, Abdolmaleki A. Biosynthesis, characterization and evaluation of the supportive properties and biocompatibility of DBM nanoparticles on a tissue-engineered nerve conduit from decellularized sciatic nerve. Regen Ther 2020; 14: 315-21.
  31. Abdolmaleki A, Ghayour MB, Zahri S, Asadi A, Behnam-Rassouli M. Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration [in Persian]. Tehran Univ Med J 2019; 10; 77(2): 115-22.
  32. Shaik MM, Dapkekar A, Rajwade JM, Jadhav SH, Kowshik M. Antioxidant-antibacterial containing bi-layer scaffolds as potential candidates for management of oxidative stress and infections in wound healing. J Mater Sci Mater Med 2019; 30(1): 13.
  33. Vance RJ, Miller DC, Thapa A, Haberstroh KM, Webster TJ. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Biomaterials 2004; 25(11): 2095-103.
  34. Kittur S, Wilasrusmee S, Pedersen WA, Mattson M, Straube-West K, Wilasrusmee C, et al. Neurotrophic and neuroprotective effects of milk thistle (Silybum marianum) on neurons in culture. J Mol Neurosci 2002; 18(3): 265-9.
  35. Xiong S, Zhao Q, Rong Z, Huang G, Huang Y, Chen P, et al. hSef inhibits PC-12 cell differentiation by interfering with Ras-mitogen-activated protein kinase MAPK signaling. J Biol Chem 2003; 278(50):
    50273-82.
  36. Sharifi Ferdoey F, Irani S, Zandi M, Soleimani M. Synthesis and surface modification of polycaprolactone nanofibers for tissue engineering [in Persian]. J Ardabil Univ Med Sci 2014; 14(3): 217-28.‏
  37. Ranjbar-Mohammadi M, Hajar Bahrami S. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Mater Sci Eng C Mater Biol Appl 2015; 48: 71-9.
  38. Moonesi Rad R, Atila D, Akgün EE, Evis Z, Keskin D, Tezcaner A. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics. Mater Sci Eng C Mater Biol Appl 2019; 100: 928-48.
  39. Duailibi SE, Duailibi MT, Zhang W, Asrican R, Vacanti JP, Yelick PC. Bioengineered dental tissues grown in the rat jaw. J Dent Res 2008; 87(8): 745-50.‏
  40. Kim NR, Lee DH, Chung PH, Yang HC. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108(5): e94-100.
  41. HO CC, Fang HY, Wang B, Huang TH, Shie MY. The effects of Biodentine/polycaprolactone three‐dimensional‐scaffold with odontogenesis properties on human dental pulp cells. Int Endod J 2018; 51(Suppl 4): e291-300.‏
  42. Jazayeri HE, Lee UM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2020; 36(2): e47-58.