Extraction, Comparison, and Evaluation of Electrocardiography and Vectorcardiography Signals Features

Document Type : Original Article (s)

Authors

1 استاد، گروه بیو‌الکتریک، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشجوی کارشناسی ارشد، گروه بیوالکتریک، دانشکده‌ی فن‌آوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 متخصص قلب و عروق، مرکز تحقیقات قلب و عروق، پژوهشکده‌ی قلب و عروق، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

Abstract

Background: Cardiovascular disease is the most common disease of the century and is considered as a major cause of mortality and heart failure in industrial and semi-industrial societies. Using electrical signals produced by the heart muscle have an important role in the recognition and diagnosis of heart diseases.Methods: In this study, the signal recorded via vectorcardiography using an electrode arrangement called Frank, and electrocardiography were performed; a limited number of signals available in the database of the National Metrology Institute of Germany (Physikalisch-Technische Bundesanstalt or PTB) were also used. At the end, the data in each field vectorcardiography and electrocardiographic were assessed and compared. In order to make better use of time and optimize signal analysis, feature extraction operation was performed in the wavelet domain; and then, reducing the characteristics and classification were performed using support vector machine technique.Findings: There were the accuracy of 83.18% and the validity of 99.06% in vectorcardiography leads and the accuracy of 75.44% and the validity of 97.16% in electrocardiographic leads.Conclusion: Based on support vector machine classification system, the properties of the Frank system leads tended to better results than conventional 12-leads electrocardiogram (ECG).

Keywords


  1. Gacek A, Pedrycz W. ECG signal processing, classification and interpretation. New York, NY: Springer; 2012.
  2. Swamy P, Jayaraman S, Chandra MG. An improved method for digital time series signal generation from scanned ECG records. Proceedings of the 2010 International Conference on Bioinformatics and Biomedical Technology (ICBBT); 2010 Apr 16-18; Chengdu, Sichuan, China.
  3. Edenbrandt L, Pahlm O. Vectorcardiogram synthesized from a 12-lead ECG: superiority of the inverse Dower matrix. J Electrocardiol 1988; 21(4): 361-7.
  4. Jolliffe I. Principal component analysis. Encyclopedia of statistics in behavioral science. Hoboken, NJ: Wiley; 2005.
  5. Wang L. Support vector machines: Theory and applications. New York, NY: Springer; 2005.
  6. Dawson D, Yang H, Malshe M, Bukkapatnam ST, Benjamin B, Komanduri R. Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals. J Electrocardiol 2009; 42(6): 622-30.
  7. Rodriguez JD, Perez A, Lozano JA. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 2010; 32(3): 569-75.
  8. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985; 32(3): 230-6.