The Effect of Bacteriophages against Gram-Negative Bacteria Infections in Vivo: A Systematic Review

Document Type : Review Article

Authors

1 PhD Student, Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran

2 Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran

3 Professor, Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Background: Infections caused by multidrug-resistant (MDR) Gram-negative bacteria are rising. Bacteriophages are suggested as an alternative treatment option for the treatment of antibiotic-resistant bacteria. Bacteriophages in treatment of Gram-negative bacterial infections is not well investigated in vivo. The aim of this study was to review systematically the studies on bacteriophages against infection caused by Gram-negative bacteria in vivo.Methods: This systematic review was done using electronic databases, including Scopus, PubMed, Google Scholar, and Web of science; the articles published from 1983 to 2018 were investigated. Studies meeting the inclusion criteria were selected, and the data were estimated using a review method.Findings: 1310 articles were indexed from which 380 were selected based on their abstracts. Then, some were excluded including clinical trials and in-vitro studies. Finally, experimental studies (n = 31), that met the inclusion criteria and were published in English, were selected.Conclusion: This review showed that bacteriophages are an effective treatment against n-vivo Gram-negative bacteria infections even be used orally, topically, or subcutaneously injected.

Keywords


  1. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 2010; 362(19): 1804-13.
  2. Menegueti MG, Canini SR, Bellissimo-Rodrigues F, Laus AM. Evaluation of Nosocomial Infection Control Programs in health services. Rev Lat Am Enfermagem 2015; 23(1): 98-105.
  3. Abedon ST, Thomas-Abedon C, Thomas A, Mazure H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage 2011; 1(3): 174-8.
  4. Rahimzadeh G, Saeedi M, Farshidi F, Rezai M S. Phage therapy in treatment of gram-negative bacterial infections: A systematic review. J Mazandaran Univ Med Sci 2018; 28(165): 203-12. [In Persian].
  5. Hanlon GW. Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 2007; 30(2): 118-28.
  6. Sulakvelidze A. Bacteriophage: A new journal for the most ubiquitous organisms on Earth. Bacteriophage 2011; 1(1): 1-2.
  7. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28(2): 127-81.
  8. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brussow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol 2003; 6(4): 417-24.
  9. Rahimzadeh G, Gill P, Rezai MS. Characterization and lytic activity of methicillin-resistant Staphylococcus aureus (MRSA) phages isolated from NICU. Australas Med J 2016; 9(6): 169-75.
  10. Rahimzadeh G, Gill P, Rezai M S. Characterization of methicillin-resistant Staphylococcus aureus (MRSA) phages from sewage at a tertiary pediatric hospital. Arch Pediatr Infect Dis 2017; 5(1): e39615.
  11. Rahimzadeh G, Gill P, Rezai MS. Ultra structural characteristics of methicillin resistant Staphylococcus aureus cell wall after affecting with lytic bacteriophages using atomic force microscopy. Iran J Basic Med Sci 2019; 22(3): 290-5.
  12. Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, et al. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol 2018; 169(9): 531-9.
  13. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 2010; 201(7): 1096-104.
  14. Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 2011; 55(4): 1358-65.
  15. Kumari S, Harjai K, Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 2011; 60(Pt 2): 205-10.
  16. Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS One 2011; 6(2): e16963.
  17. Vinodkumar CS, Neelagund YF, Kalsurmath S. Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J Commun Dis 2005; 37(1): 18-29.
  18. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, et al. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med 2006; 17(2): 309-17.
  19. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, et al. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum beta-lactamase-producing Escherichia coli bacteremia. Int J Mol Med 2006; 17(2): 347-55.
  20. Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 1982; 128(2): 307-18.
  21. Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 1983; 129(8): 2659-75.
  22. D'Herelle F. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. 1917. Res Microbiol 2007; 158(7): 553-4.
  23. Eaton MD, Bayne-Jones S. Bacteriophage therapy: Review of the principles and results of the use of bacteriophage in the treatment of infections. JAMA 1934; 103(23): 1769-76.
  24. Nale JY, Chutia M, Carr P, Hickenbotham PT, Clokie MR. 'Get in Early'; Biofilm and wax moth (Galleria mellonella) Models reveal new insights into the therapeutic potential of clostridium difficile bacteriophages. Front Microbiol 2016; 7: 1383.
  25. Fiorentin L, Vieira ND, Barioni W. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol 2005; 34(3): 258-63.
  26. Miller RW, Skinner EJ, Sulakvelidze A, Mathis GF, Hofacre CL. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis 2010; 54(1): 33-40.
  27. Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, et al. Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 2007; 51(2): 446-52.
  28. Nikkhahi F, Soltan Dallal MM, Alimohammadi M, Rahimi FA, Rajabi Z, Fardsanei F, et al. Phage therapy: Assessment of the efficacy of a bacteriophage isolated in the treatment of salmonellosis induced by Salmonella enteritidis in mice. Gastroenterol Hepatol Bed Bench 2017; 10(2): 131-6.
  29. Barrow P, Lovell M, Berchieri A. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol 1998; 5(3): 294-8.
  30. Danelishvili L, Young LS, Bermudez LE. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium. Microb Drug Resist 2006; 12(1): 1-6.
  31. Guang-Han O, Leang-Chung C, Vellasamy KM, Mariappan V, Li-Yen C, Vadivelu J. Experimental phage therapy for Burkholderia pseudomallei infection. PLoS One 2016; 11(7): e0158213.
  32. Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U. Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 2004; 48(10): 3817-22.
  33. Heo YJ, Lee YR, Jung HH, Lee J, Ko G, Cho YH. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother 2009; 53(6): 2469-74.
  34. Jeon J, Ryu CM, Lee JY, Park JH, Yong D, Lee K. In vivo application of bacteriophage as a potential therapeutic agent to control OXA-66-like carbapenemase-producing Acinetobacter baumannii strains belonging to sequence type 357. Appl Environ Microbiol 2016; 82(14): 4200-8.
  35. Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, et al. Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis 2014; 210(1): 72-8.
  36. Kumari S, Harjai K, Chhibber S. Efficacy of bacteriophage treatment in murine burn wound infection induced by klebsiella pneumoniae. J Microbiol Biotechnol 2009; 19(6): 622-8.
  37. Levin BR, Bull JJ. Phage therapy revisited: The population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am Nat 1996; 147(6): 881-98.
  38. Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, et al. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 2015; 59(4): 1983-91.
  39. Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol 2018; 18(1): 97.
  40. Vinodkumar CS, Kalsurmath S, Neelagund YF. Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 2008; 51(3): 360-6.
  41. Yin S, Huang G, Zhang Y, Jiang B, Yang Z, Dong Z, et al. Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem 2017; 44(6): 2337-45.
  42. Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato S, Morita T, et al. Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS One 2012; 7(10): e47742.
  43. Khairnar K, Raut MP, Chandekar RH, Sanmukh SG, Paunikar WN. Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Vet Res 2013; 9: 264.
  44. Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, et al. Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio 2012; 3(2): e00029-12.
  45. Cha K, Oh HK, Jang JY, Jo Y, Kim WK, Ha GU, et al. Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front Microbiol 2018; 9: 696.