Frequency of Metallo-β-Lactamase and Antimicrobial Resistance Patterns of Acinetobacter Baumannii in Carbapenem-Resistant Isolates from Intensive Care Units of the Hospitals in Isfahan City, Iran

Document Type : Original Article (s)

Authors

1 Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

2 Department of Microbiology, Islamic Azad University, Falavarjan Branch, Isfahan, Iran

Abstract

Background: Acinetobacter baumannii is a gram-negative non-fermenting cocobacill or cocci, which is mostly found in soil, different water sources, and many healthcare environments. It is intrinsically resistance to many antibiotics. Nowadays, carbapenem is the last drug to be used for the treatment of infection of multidrug-resistant (MDR) Acinetobacter baumannii. Carbapenem-resistance in Acinetobacter baumannii strains is also expanding and in turn. The present study aimed to assess the frequency of metallo-β-lactamase (MBL) and antimicrobial resistance patterns of Acinetobacter baumannii in carbapenem-resistant isolates from intensive care units (ICUs).Methods: In a cross-sectional study during 2012-2013, Acinetobacter baumannii isolates from clinical specimens of patients hospitalized in the intensive care units (ICU) in hospitals of Isfahan city, Iran, were identified using genetic and biochemical methods. The susceptibility of isolates was determined via standard disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI). Metallo-β-lactamase-producing isolates were identified using Double Disc Synergy Test (DDST).Findings: 100 isolates were determined as Acinetobacter baumannii. The antimicrobial patterns of isolates showed that 62% of isolates were resistant to amikacin, 88% to tetracycline, 92% to ceftazidime, 96% to imipenem and meropenem, 93% to ampicillin-sulbactam, and 98% to ciprofloxacin, trimethoprim-sulfamethoxazole and cefepime. From 96 non-susceptible Acinetobacter baumannii strains imipenem, 95 (97.9%) were found to produce metallo-β-lactamase.Conclusion: To prevent spreading of the nosocomial infections caused by Acinetobacter baumannii in intensive care units, the rapid and accurate report of metallo-β-lactamase seems to be necessary in order to better monitor and more accurate tracking of multidrug-resistant strains.

Keywords


  1. Delissalde F, Amabile-Cuevas CF. Comparison of antibiotic susceptibility and plasmid content, between biofilm producing and non-producing clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 2004; 24(4): 405-8.
  2. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006; 19(2): 403-34.
  3. Japoni A, Alborzi A, Kalani M, Nasiri J, Hayati M, Farshad S. Susceptibility patterns and cross-resistance of antibiotics against Pseudomonas aeruginosa isolated from burn patients in the South of Iran. Burns 2006; 32(3): 343-7.
  4. Weinstein RA. Nosocomial infection update. Emerg Infect Dis 1998; 4(3): 416-20.
  5. Landman D, Quale JM, Mayorga D, Adedeji A, Vangala K, Ravishankar J, et al. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Arch Intern Med 2002; 162(13): 1515-20.
  6. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999; 43(6): 1379-82.
  7. Golshani Z, Ahadi AM, Sharifzadeh A. Occurrence of ambler class B metallo-β-lactamase gene in imipenem-resistant pseudomonas aeruginosa strains isolated from clinical samples. Zahedan J Res Med Sci 2014; 16(2): 6-9.
  8. Coelho J, Woodford N, Turton J, Livermore DM. Multiresistant acinetobacter in the UK: how big a threat? J Hosp Infect 2004; 58(3): 167-9.
  9. Zarrilli R, Crispino M, Bagattini M, Barretta E, Di PA, Triassi M, et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J Clin Microbiol 2004; 42(3): 946-53.
  10. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35(1): 147-51.
  11. Cheng X, Wang P, Wang Y, Zhang H, Tao C, Yang W, et al. Identification and distribution of the clinical isolates of imipenem-resistant Pseudomonas aeruginosa carrying metallo-beta-lactamase and/or class 1 integron genes. J Huazhong Univ Sci Technolog Med Sci 2008; 28(3): 235-8.
  12. Bahar MA, Jamali S, Samadikuchaksaraei A. Imipenem-resistant Pseudomonas aeruginosa strains carry metallo-beta-lactamase gene bla(VIM) in a level I Iranian burn hospital. Burns 2010; 36(6): 826-30.
  13. Hall BG, Barlow M. Revised Ambler classification of {beta}-lactamases. J Antimicrob Chemother 2005; 55(6): 1050-1.
  14. Kalantar D, Mansouri SH, Razavi M. Emergence of imipenem resistance and presence of metallo-b-lactamases enzymes in multi drug resistant gram negative bacilli isolated from clinical samples in Kerman, 2007-2008. J Kerman Univ Med Sci 2010; 17(3): 208-14. [In Persian].
  15. Altoparlak U, Aktas F, Celebi D, Ozkurt Z, Akcay MN. Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates. Burns 2005; 31(6): 707-10.
  16. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18(2): 306-25.
  17. Walsh TR. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005; 11(Suppl 6): 2-9.
  18. Brown S, Young HK, Amyes SG. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect 2005; 11(1): 15-23.
  19. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: twentieth informational supplement: M100-S20. Wayne PA: Clinical Laboratory Standards Institute; 2012.
  20. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002; 40(10): 3798-801.
  21. Shahcheraghi F, Abbasalipour M, Feizabadi M, Ebrahimipour G, Akbari N. Isolation and genetic characterization of metallo-beta-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iran J Microbiol 2011; 3(2): 68-74.
  22. Baran G, Erbay A, Bodur H, Onguru P, Akinci E, Balaban N, et al. Risk factors for nosocomial imipenem-resistant Acinetobacter baumannii infections. Int J Infect Dis 2008; 12(1): 16-21.
  23. Cai XF, Sun JM, Bao LS, Li WB. Risk factors and antibiotic resistance of pneumonia caused by multidrug resistant Acinetobacter baumannii in pediatric intensive care unit. World J Emerg Med 2012; 3(3): 202-7.
  24. Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: Twenty-Fourth informational supplement: M100-S24. Wayne PA: Clinical Laboratory Standards Institute; 2014.
  25. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect 2001; 7(2): 88-91.
  26. Yong D, Choi YS, Roh KH, Kim CK, Park YH, Yum JH, et al. Increasing prevalence and diversity of metallo-beta-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother 2006; 50(5): 1884-6.
  27. Anwar S, Amin R. Phenotype detection of metallo–beta–lactamase among the imipenem resistant psudomonas and asintobacter in the tertiary care hospitals of Dhaka city. BMC proc 2011; 5 (1): 92.
  28. Peymani A, Nahaei MR, Farajnia S, Hasani A, Mirsalehian A, Sohrabi N, et al. High prevalence of metallo-beta-lactamase-producing acinetobacter baumannii in a teaching hospital in Tabriz, Iran. Jpn J Infect Dis 2011; 64(1): 69-71.
  29. Kumar AV, Pillai VS, Dinesh KR. The phenotypic detection of carbapenemase in meropenem resistant Acinetobacter Calcoaceticus-Baumannii complex in a tertiary care hospital in south India. Journal of Clinical and Diagnostic Research 2011; 5(2): 223-6.
  30. Noori M, KarimiAB, Fallah F, Ali Hashemi A, Shadi Alimehr Sh, Goudarzi H Aghamohammad Sh. High prevalence of metallo-beta-lactamase producing acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Archives of Pediatric Infectious Diseases, 2014; 2(1): 2(3): e15439.