Detection Extended-Spectrum Beta-Lactamase- and Carbapenemase-Producing Enterobacteriaceae Isolates from Clinical Samples; Narrative Review

Document Type : Review Article

Authors

1 Assistant Professor, Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran

2 Professor, Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Background: The emergence of Extended-Spectrum Beta-Lactamase- and Carbapenemase- Producing Enterobacteriaceae is a threat to global health. Fast and accurate detection of these strains plays a key role in controlling nosocomial infections and effective treatment. In the present study, the detection methods of carbapenemase and broad-spectrum β-lactam-producing Enterobacteriaceae have been investigated, focusing on the summary of culture-based techniques and molecular methods.
Methods: The present study is a narrative review. The articles published between 2000 and 2022 were searched in international authoritative databases namely Scopus, PubMed, Scholar, Google, Web of Science, Science direct.
Findings: To identify Extended-Spectrum Beta-Lactamase- and Carbapenemase-Producing Enterobacteriaceae, conventional culture methods, biochemical methods, mass spectrometry, molecular methods, next generation sequencing, microarrays, whole genome sequencing, hybridization-based system, starch iodine assay, immunochromatography, colorimetry, mass spectrometry, electrochemical measurement, and flow cytometry were used.
Conclusion: For the detection of Extended-Spectrum Beta-Lactamase- and Carbapenemase-Producing Enterobacteriaceae, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight), next-generation sequencing and whole genome sequencing are among the new and selected techniques.

Keywords


  1. Rezai MS, Bagheri-nesami M, Hajalibeig A, Ahangarkani F. Multidrug and cross-resistance pattern of ESBL-producing Enterobacteriaceae agents of nosocomial infections in intensive care units [in Persian]. J Mazandaran Univ Med Sci 2017; 26(144): 39-49.
  2. Bagheri-Nesami M, Rafiei AR, Eslami G, Ahangarkani F, Rezai MS, et al. Assessment of extended-spectrum β-lactamases and integrons among Enterobacteriaceae in device-associated infections: multicenter study in north of Iran.
    Antimicrob Resist Infect Control 2016; 5: 52-60.
  3. Rezai MS, Ahangarkani F, Rafiei A, Hajalibeig A, Bagheri-Nesami M. Extended-spectrum beta-lactamases producing Pseudomonas aeruginosa isolated from patients with ventilator associated nosocomial infection. Arch Clin Infect Dis 2018; 13(4): e13974.
  4. Rezai MS, Rafiei A, Ahangarkani F, Bagheri-Nesami M, Nikkhah A, Shafahi K, et al. Emergence of extensively drug resistant Acinetobacter baumannii-encoding integrons and extended-spectrum beta-lactamase genes isolated from ventilator-associated pneumonia patients. Jundishapur J Microbiol 2017; 10(7): e14377.
  5. Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum beta-lactamases and carbapenemases, and antimicrobial resistance.
    J Intensive Care 2020; 8: 13-20.
  6. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis 2017; 215(suppl_1): S28-36.
  7. Antimicrobial resistance in the EU/EEA (EARS-Net)-annual epidemiological report 2019. [Online]. [cited 2020 Nov 18]. Avilable from: URL: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019
  8. Voor In 't Holt AF, Mourik K, Beishuizen B, van der Schoor AS, Verbon A, Vos MC, et al. Acquisition of multidrug-resistant Enterobacterales during international travel: A systematic review of clinical and microbiological characteristics and meta-analyses of risk factors. Antimicrob Resist Infect Control 2020; 9(1): 71-80.
  9. Eslami G, Rezaie MS, Salehifar E, Rafiei A, Langaie T, Rafati MR, et al. Epidemiology of extended spectrum beta lactamases producing E. coli genes in strains isolated from children with urinary tract infection in North of Iran [in Persian]. J Maz Univ Med Sci 2015; 25(132): 270-9.
  10. Sturod K, Dahle UR, Berg ES, Steinbakk M, Wester AL. Evaluation of the ability of four ESBL-screening media to detect ESBL-producing Salmonella and Shigella. BMC Microbiol 2014; 14: 217-27.
  11. Reglier-Poupet H, Naas T, Carrer A, Cady A, Adam JM, Fortineau N, et al. Performance of chromID ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum beta-lactamases. J Med Microbiol 2008; 57(Pt 3): 310-5.
  12. Grohs P, Tillecovidin B, Caumont-Prim A, Carbonnelle E, Day N, Podglajen I, et al. Comparison of five media for detection of extended-spectrum Beta-lactamase by use of the wasp instrument for automated specimen processing. J Clin Microbiol 2013, 51(8): 2713-6.
  13. Göttig S, Walker SV, Saleh A, Koroska F, Sommer J, Stelzer Y, et al. Comparison of nine different selective agars for the detection of carbapenemase-producing Enterobacterales (CPE). Eur J Clin Microbiol Infect Dis 2020; 39: 923-7.
  14. Sturød K, Dahle UR, Berg ES, Steinbakk M, Wester AL, et al. Evaluation of the ability of four ESBL-screening media to detect ESBL-producing Salmonella and Shigella. BMC Microbiol 2014; 14: 217-23.
  15. Simner PJ, Gilmour MW, DeGagne P, Nichol K, Karlowsky JA. Evaluation of five chromogenic agar media and the Rosco Rapid Carb screen kit for detection and confirmation of carbapenemase production in Gram-negative bacilli. J Clin Microbiol 2015; 53: 105-12.
  16. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: Review and bench guide. Clin Microbiol Infect 2008;
    14(Suppl 1): 90-103.
  17. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JDD. Laboratory detection of Enterobacteriaceae that produce carbapenemases.
    J Clin Microbiol 2012; 50: 3877-880.
  18. Sattler J, Brunke A, Hamprecht A. Systematic comparison of three commercially available combination disc tests and zCIM for carbapenemase detection in Enterobacterales isolates. JClin Microbiol 2021; 59(9): e0314020.
  19. Pantel A, Souzy D, Sotto A, Lavigne JP. Evaluation of two phenotypic screening tests for carbapenemase-producing enterobacteriaceae. J Clin Microbiol 2015; 53(10): 3359-62.
  20. Girlich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteri-aceae. J Clin Microbiol 2012; 50(2): 477-9.
  21. The modified hodge test for suspected carbapenemase production in enterobacteriaceae. [Online]. [cited 2021]; Available from: URL: https://clsi.org/media/1899/_m100_archived_methods_table.pdf
  22. M100 performance standards for antimicrobial susceptibility testing. [Online]. [cited 2021 Aug 12]; Available from: URL:

https://clsi.org/standards/products/microbiology/documents/m100/

  1. Jing X, Min X, Zhang X, Gong L, Wu T, Sun R, et al. The rapid carbapenemase detection method (rCDM) for rapid and accurate detection of carbapenemase-producing enterobacteriaceae and pseudomonas aeruginosa. Front Cell Infect Microbiol 2019; 9: 371-7.
  2. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or Epi demiological importance. [Online] [cited 2017 July]; Available from: URL: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf
  3. Van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram- negative rods. PLoS One 2015; 10(3): e0123690.
  4. Nordmann P, Dortet L, Poirel L. Rapid detection of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 2012; 50(9): 3016-22.
  5. Baeza LL, Pfennigwerth N, Greissl C, Göttig S, Saleh A, Stelzer Y, et al. Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect 2019; 25(10): 1286.e9-1286.e15.
  6. Meier M, Hamprecht A. Systematic comparison of four methods for detection of carbapenemase-producing enterobacterales directly from blood cultures. J Clin Microbiol 2019; 57(11): e00709-19.
  7. Dortet L, Bréchard L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures. Clin Microbiol Infect 2014; 20(4): 340-4.
  8. Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. Evaluation of the RAPIDEC(R) CARBA NP, the rapid CARB Screen(R) and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae.
    J Antimicrob Chemother 2015; 70(11): 3014-22.
  9. Bernabeu S, Dortet L, Naas T. Evaluation of the beta-CARBA test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli. J Antimicrob Chemother 2017; 72(6): 1646-58.
  10. Mancini S, Kieffer N, Poirel L, Nordmann P. Evaluation of the RAPIDEC(R) CARBA NP and beta-CARBA(R) tests for rapid detection of Carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2017; 88(4): 293-7.
  11. Sattler J, Brunke A, Hamprecht A. Evaluation of CARBA PAcE, a novel rapid test for detection of carbapenemase-producing Enterobacterales. J Med Microbiol 2021; 70(2): 129-36.
  12. Pires J, Novais A, Peixe L. Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2013; 51: 4281-3.
  13. Novais A, Brilhante M, Pires J, Peixe L. Evaluation of the recently launched rapid carb blue kit for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol 2015; 53(9): 3105-7.
  14. Pasteran F, Tijet N, Melano RG, Corso A. Simplified protocol for carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2015; 53: 3908-11.
  15. Ma CW, Ng KK, Yam BH, Ho PL, Ka RY, Yang D. Rapid broad spectrum detection of carbapenemases with a dual fluorogenic-colorimetric probe. J Am Chem Soc 2021; 143(18): 6886-94.
  16. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among enterobacteriaceae. J Clin Microbiol 2017; 55(8): 2321-33.
  17. Poirel L, Fernandez J, Nordmann P. Comparison of three biochemical tests for rapid detection of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 2016; 54(2): 423-7.
  18. Gallah S, Decre D, Genel N, Arlet G. The beta-Lacta test for direct detection of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in urine.
    J Clin Microbiol 2014; 52(10): 3792-4.
  19. Sauget M, Cabrolier N, Manzoni M, Bertrand X, Hocquet D. Rapid, sensitive and specific detection of OXA-48-like-producing Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Microbiol Methods 2014; 105: 88-91.
  20. Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, et al. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbo-nates to cultivation media or reaction buffers. Folia Microbiol (Praha) 2015; 60(2): 119-29.
  21. Girlich D, Bernabeu S, Fortineau N, Dortet L, Naas T. Evaluation of the CRE and ESBL ELITe MGB(R) kits for the accurate detection of carbapenemase- or CTX-M-producing bacteria. Diagn Microbiol Infect Dis 2018; 92(1): 1-7.
  22. Oueslati S, Girlich D, Dortet L, Naas T. Evaluation of the amplidiag carbaR+VRE kit for accurate detection of carbapenemase-producing bacteria. J Clin Microbiol 2018; 56(3): e01092-17.
  23. Girlich D, Bernabeu S, Grosperrin V, Langlois I, Begasse C, Arangia N, et al. Evaluation of the amplidiag CarbaR+MCR kit for accurate detection of carbapenemase-producing and colistin-resistant bacteria. J. Clin. Microbiol 2019; 57(3): e01800-18.
  24. Dortet L, Fusaro M, Naas T. Improvement of the xpert carba-R kit for the detection of carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2016; 60(6): 3832-7.
  25. Tojo M, Fujita T, Ainoda Y, Nagamatsu M, Hayakawa K, Mezaki K, et al. Evaluation of an automated rapid diagnostic assay for detection of Gram-negative bacteria and their drug-resistance genes in positive blood cultures. PLoS One 2014; 9(4): e94064.
  26. Verroken A, Despas N, Rodriguez-Villalobos H, Laterre PF. The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: A pre-post intervention study. PLoS One 2019; 14(9): e0223122.
  27. Hopkins TM, Juang P, Weaver K, Kollef MH, Betthauser KD. Outcomes of macrolide deescalation in severe community acquired pneumonia. Clin Ther 2019; 41(12): 2540-8.
  28. Huang TD, Melnik E, Bogaerts P, Evrard S, Glupczynski Y. Evaluation of the ePlex blood culture identification panels for detection of pathogens in bloodstream infections. J Clin Microbiol 2019; 57(2): e01597-18.
  29. Burrack-Lange SC, Personne Y, Huber M, Winkler E, Weile J, Knabbe C, et al. Multicenter assessment of the rapid unyvero blood culture molecular assay.
    J Med Microbiol 2018; 67(9): 1294-301.
  30. Kaase M, Szabados F, Wassill L, Gatermann SG. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol 2012; 50(9): 3115-8.
  31. Ceyssens PJ, Garcia-Graells C, Fux F, Botteldoorn N, Mattheus W, Wuyts V, et al. Development of a Luminex xTAG(R) assay for cost-effective multiplex detection of beta-lactamases in Gram-negative bacteria. J Antimicrob Chemother 2016; 71(9): 2479-83.
  32. Bogaerts P, Hamels S, de Mendonca R, Huang TD, Roisin S, Remacle J, et al. Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J Antimicrob Chemother 2013; 68(2): 340-7.
  33. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 2015; 33(3): 296-300.
  34. Baeza LL, Hamprecht A. A profile of the GenePOC Carba C assay for the detection and differentiation of gene sequences associated with carbapenem-non-susceptibility. Expert Rev Mol Diagn 2020; 20(8): 757-69.
  35. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA microarray for the rapid detection of extended-spectrum beta-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J Antimicrob Chemother 2012; 67(8): 1865-9.
  36. Ogutu JO, Zhang Q, Huang Y, Yan H, Su L, Gao B, et al. Development of a multiplex PCR system and its application in detection of blaSHV, blaTEM, blaCTX-M-1, blaCTX-M-9 and blaOXA-1 group genes in clinical Klebsiella pneumoniae and Escherichia coli strains. J Antibiot 2015; 68(12): 725-733.
  37. Chung HS, Lee M. Verification of the performance of the BD MAX check-points CPO assay on clinical isolates. J Lab Med 2020; 44(3):165-8.
  38. Cunningham SA, Vasoo S, Patel R. Evaluation of the check-points check MDR CT103 and CT103 XL microarray kits by use of preparatory rapid cell lysis. J Clin Microbiol 2016; 54(5): 1368-71.
  39. Zalas-Wiecek P, Gospodarek-Komkowska E, Smalczewska A. Rapid detection of genes encoding extended-spectrum beta-lactamase and carbapenemase in clinical escherichia coli isolates with eazyplex SuperBug CRE system. Microb Drug Resist 2020; 26(10): 1245-9.
  40. Hinic V, Ziegler J, Straub C, Goldenberger D, Frei R. Extended-spectrum beta-lactamase (ESBL) detection directly from urine samples with the rapid isothermal amplification-based eazyplex(R) SuperBug CRE assay: Proof of concept. J Microbiol Methods 2015; 119: 203-5.
  41. Gazin M, Paasch F, Goossens H, Malhotra-Kumar S, MOSAR WP2, SATURN WP1 Study Teams. Current trends in culture-based and molecular detection of extended-spectrum-beta-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 2012; 50(4): 1140-6.
  42. Akyar I, Ayas MK, Karatuna O. Performance evaluation of MALDI-TOF MS MBT STAR-BL versus in-house carba NP testing for the rapid detection of carbapenemase activity in escherichia coli and klebsiella pneumoniae strains. Microb Drug Resist 2019; 25(7): 985-90.
  43. Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay. Clin Microbiol Infect 2018; 24(7): 738-43.
  44. Idelevich EA, Storck LM, Sparbier K, Drews O, Kostrzewa M, Becker K. Rapid direct susceptibility testing from positive blood cultures by the matrix-assisted laser desorption ionization-time of flight mass spectrometry-based direct-on-target microdroplet growth assay. J Clin Microbiol 2018; 56(10): e00913-18.
  45. Burckhardt I, Zimmermann S. Using matrix-assisted
    laser desorption ionization-time of light mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 2011; 49(9): 3321-4.
  46. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 2012; 18(5): 432-8.
  47. Girlich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol 2012; 50(2): 477-9.
  48. van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One 2015; 10(3): e0123690.
  49. Tijet N, Patel SN, Melano RG. Detection of carbapenemase activity in Enterobacteriaceae: comparison of the carbapenem inactivation method versus the Carba NP test. J Antimicrob Chemother 2016; 71(1): 274-6.
  50. Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57(9): 4578-80.
  51. Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
  52. AbdelGhani S, Thomson GK, Snyder JW, Thomson KS. Comparison of the carba NP, modified carba NP, and updated rosco neo-rapid CARB kit tests for carbapenemase detection. J Clin Microbiol 2015; 53(11): 3539-42.
  53. Dortet L, Poirel L, Nordmann P. Rapid identification of carbapene-mase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother 2012; 56(12): 6437-40.
  54. Notake S, Matsuda M, Tamai K, Yanagisawa H, Hiramatsu K, Kikuchi K. Detection of IMP metallo-β-lactamase in carbapenem-nonsusceptible Enterobacteriaceae and non-glucose-fermenting Gram-negative rods by immunochromato-graphy assay. J Clin Microbiol 2013; 51(6):1762-8.
  55. Evrard S. Rethinking clinical research in surgical oncology. From comic opera to quality control [in French]. Bull Cancer 2016; 103(1): 87-95.
  56. Bogaerts P, Yunus S, Massart M, Huang TD, Glupczynski Y. Evaluation of the BYG Carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol 2016; 54(2): 349-58.
  57. Hrabák J, Studentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2012; 50(7): 2441-3.
  58. Braun SD, Monecke S, Thürmer A, Ruppelt A, Makarewicz O, Pletz M, et al. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS One 2014; 9(7): e102232.
  59. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J Antimicrob Chemother 2012; 67(8): 1865-9.
  60. Bogaerts P, Hujer AM, Naas T, de Castro RR, Endimiani A, Nordmann P, et al. Multicenter evaluation of a new DNA microarray for rapid detection of clinically relevant bla genes from β-lactam-resistant gram-negative bacteria. Antimicrob Agents Chemother 2011; 55(9): 4457-60.
  61. Reuter S, Ellington MJ, Cartwright EJ, Köser CU, Török ME, Gouliouris T, et al. Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology. JAMA Intern Med 2013; 173(15): 1397-404.
  62. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 2012; 113(5): 1014-26.
  63. Bisiklis A, Papageorgiou F, Frantzidou F, Alexiou-Daniel S. Specic detection of blaVIM and bla IMP metallo-β-lactamase genes in a single real-time PCR. Clin Microbiol Infect 2007; 13: 1201-3.
  64. Geyer CN, Reisbig MD, Hanson ND. Development of a TaqMan multiplex PCR assay for detection of plasmid-mediated ampC β-lactamase genes. J Clin Microbiol 2012; 50: 3722-5.
  65. Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother 2012; 67: 906-9.
  66. Guillard T, Moret H, Brasme L, Carlier A, Vernet-Garnier V, Cambau E, et al. Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR. Diagn Microbiol Infect Dis 2011; 70(2): 253-9.
  67. Spanu T, Fiori B, D'Inzeo T, Canu G, Campoli S, Giani T, et al. Evaluation of the new nucliSENS easyQ KPC test for rapid detection of Klebsiella pneumoniae carbapene-mase genes (bla KPC). J Clin Microbiol 2012; 50(8): 2783-5.
  68. Singh K, Mangold KA, Wyant K, Schora DM, Voss B, Kaul KL, et al. Rectal screening for Klebsiella pneumoniae carbapenemases: comparison of real-time PCR and culture using two selective screening agar plates. J Clin Microbiol 2012; 50(8): 2596-600.
  69. Faria-Ramos I, Espinar MJ, Rocha R, Santos-Antunes J, Rodrigues AG, Canton R, et al. A novel ow cytometric assay for rapid detection of extended-spectrum
    β-lactamases. Clin Microbiol Infect 2013; 19(1): E8-15.
  70. Maragakis LL. Recognition and prevention of multidrug-resistant Gram-negative bacteria in the intensive care unit. Crit Care Med 2010; 38(8 Suppl): S345-51.
  71. Lu Q, Okanda T, Yang Y, Khalifa HO, Haque A, Takemura H, et al. High-speed quenching probe-polymerase chain reaction assay for the rapid detection of carbapenemase-producing gene using GENECUBE: A fully automatic gene analyzer. Mol Diagn Ther 2021; 25(2): 231-8.
  72. Perovic O, Britz E, Chetty V, Singh-Moodley A. Molecular detection of carbapenemase-producing genes in referral enterobacteriaceae in South Africa: A short report. S Afr Med J 2016; 106(10): 975-7.
  73. Yamamoto N, Kawahara R, Akeda Y, Shanmugakani RK, Yoshida H, Hagiya H, et al. Development of selective medium for IMP-type carbapenemase-producing Enterobacteriaceae in stool specimens. BMC Infect Dis 2017; 17(1): 229.
  74. Mezger A, Gullberg E, Göransson J, Zorzet A, Herthnek D, Tano E, et al. A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J Clin Microbiol 2015; 53(2): 425-32.
  75. van Belkum A, Rochas A. Laboratory-based and point-of-care testing for MSSA/MRSA detection in the age of whole genome sequencing. Front Microbiol 2018; 9: 1437-47.