Identification of Carbapenemase Enzymes in Clinical Isolates of Enterobacteriaceae Using Modified Hodge Test

Document Type : Original Article (s)

Authors

1 Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

2 Professor, Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran

3 Associate Professor, Brucellosis Research Center AND Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Background: Carbapenem antibiotics are a subtype of beta-lactam antibiotics, which can play an important role in the treatment of severe infections and multi-drug resistant bacteria. The most important mechanism of resistance to carbapenems is carbapenemase production. Since these enzymes are located on mobile genetic elements such as plasmids, they can rapidly spread among gram-negative bacteria.Methods: A total of 500 Enterobacteriaceae clinical isolates were collected in Hamadan city, Iran, during October 2012 to June 2013. The isolates detected by biochemical tests and confirmed by polymerase chain reaction (PCR) method. Antimicrobial susceptibility patterns were determined using the agar diffusion method for 14 antibiotics. Modified Hodge test (MHT) was used for carbapenemase production in the resistant isolates to carbapenem antibiotics.Findings: Among the family members of Enterobacteriaceae, Escherichia coli (66.8%), Klebsiella spp. (21.2%) and Proteus spp. (6.8%) showed the highest role in infections, respectively. These organisms showed the highest resistance to cefotaxime (64.2%), aztreonam (59.3%) and cotrimoxazole (58.6%). Out of 40 isolates which were intermediate or non-susceptible for carbapenems, 29 (72.5%) were positive for carbapenemase production by Modified Hodge test.Conclusion: Over the past decade, carbapenem-resistant Enterobacteriaceae have emerged and spread throughout the world. Widespread emergence of carbapenem-resistant isolates has been increasing concerned in recent years; because the Carbapenem antibiotics are often used as the last line of treatment for severe infections caused by resistant Gram-negative bacilli including Enterobacteriaceae family. Modified Hodge test can be used as a simple method for the identification of carbapenemase-producing strains in gram-negative strains.

Keywords


  1. Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35(5): 820-55.
  2. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011; 35(5): 790-819.
  3. Toleman MA, Walsh TR. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35(5): 912-35.
  4. Paterson DL. Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med 2006; 119(6 Suppl 1): S20-S28.
  5. Ferreira da SM, Vaz-Moreira I, Gonzalez-Pajuelo M, Nunes OC, Manaia CM. Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 2007; 60(1): 166-76.
  6. Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 2005; 41(6): 848-54.
  7. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009; 9(4): 228-36.
  8. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17(10): 1791-8.
  9. Anthony KB, Fishman NO, Linkin DR, Gasink LB, Edelstein PH, Lautenbach E. Clinical and microbiological outcomes of serious infections with multidrug-resistant gram-negative organisms treated with tigecycline. Clin Infect Dis 2008; 46(4): 567-70.
  10. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
  11. Kollef M. Appropriate empirical antibacterial therapy for nosocomial infections: getting it right the first time. Drugs 2003; 63(20): 2157-68.
  12. Apisarnthanarak A, Mundy LM. Inappropriate use of carbapenems in Thailand: a need for better education on de-escalation therapy. Clin Infect Dis 2008; 47(6): 858-9.
  13. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18(2): 306-25.
  14. Zhao WH, Hu ZQ. Epidemiology and genetics of VIM-type metallo-beta-lactamases in Gram-negative bacilli. Future Microbiol 2011; 6(3): 317-33.
  15. Xia Y, Liang Z, Su X, Xiong Y. Characterization of carbapenemase genes in Enterobacteriaceae species exhibiting decreased susceptibility to carbapenems in a university hospital in Chongqing, China. Ann Lab Med 2012; 32(4): 270-5.
  16. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med 2006; 119(6 Suppl 1): S3-10.
  17. Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. 4th ed. Philadelphia, PA: Saunders; 2010. p. 427-61.
  18. Fazzeli H, Arabestani MR, Esfahani BN, Khorvash F, Pourshafie MR, Moghim S, et al. Development of PCR-based method for detection of Enterobacteriaceae in septicemia. J Res Med Sci 2012; 17(7): 671-5.
  19. Clinical and Laboratory Standards Institute. CLSI M100-S23 Performance standards for antimicrobial susceptibility testing; twenty-thirdinformational supplement. Wayne, PA: CLSI; 2013.
  20. Girlich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol 2012; 50(2): 477-9.
  21. Amjad A, Mirza I, Abbasi S, Farwa U, Malik N, Zia F. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran J Microbiol 2011; 3(4): 189-93.
  22. Karlowsky JA, Jones ME, Thornsberry C, Friedland IR, Sahm DF. Trends in antimicrobial susceptibilities among Enterobacteriaceae isolated from hospitalized patients in the United States from 1998 to 2001. Antimicrob Agents Chemother 2003; 47(5): 1672-80.
  23. Farajnia S, Alikhani MY, Ghotaslou R, Naghili B, Nakhlband A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int J Infect Dis 2009; 13(2): 140-4.
  24. Praveen S, Prema A, Routray A. Prevalence and antibiotic susceptibility pattern of bacterial agents causing respiratory tract infection in children. Journal of Pharmacy Research 2013; 6(6): 596.
  25. Montravers P, Lepape A, Dubreuil L, Gauzit R, Pean Y, Benchimol D, et al. Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: results of the French prospective, observational EBIIA study. J Antimicrob Chemother 2009; 63(4): 785-94.
  26. Cornaglia G, Akova M, Amicosante G, Canton R, Cauda R, Docquier JD, et al. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents 2007; 29(4): 380-8.
  27. Livermore DM, James D, Reacher M, Graham C, Nichols T, Stephens P, et al. Trends in fluoroquinolone (ciprofloxacin) resistance in enterobacteriaceae from bacteremias, England and Wales, 1990-1999. Emerg Infect Dis 2002; 8(5): 473-8.
  28. Brink AJ, Bizos D, Boffard KD, Feldman C, Grolman DC, Pretorius J, et al. Guideline: appropriate use of tigecycline. S Afr Med J 2010; 100(6 Pt 2): 388-94.
  29. Teo J, Ngan G, Balm M, Jureen R, Krishnan P, Lin R. Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals. Western Pac Surveill Response J 2012; 3(1): 19-24.
  30. Shahcheraghi F, Nobari S, Rahmati GF, Nasiri S, Owlia P, Nikbin VS, et al. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist 2013; 19(1): 30-6.
  31. Dortet L, Cuzon G, Nordmann P. Dissemination of carbapenemase-producing Enterobacteriaceae in France, 2012. J Antimicrob Chemother 2014; 69(3): 623-7.
  32. Glupczynski Y, Huang TD, Bouchahrouf W, Rezende de CR, Bauraing C, Gerard M, et al. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents 2012; 39(2): 168-72.
  33. Monteiro J, Henriques APC, Santos AF, Matos DGC, Perano G, Asensi MD, et al. Carbapenem-resistant Klebsiella pneumoniae outbreak: Emergence of KPC-2-producing strains in Brazil[ Abstr C2-1929]. Proceedings of the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 2007 Sep 17-20; Chicago, IL, USA.
  34. Seah C, Low DE, Patel SN, Melano RG. Comparative evaluation of a chromogenic agar medium, the modified Hodge test, and a battery of meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J Clin Microbiol 2011; 49(5): 1965-9.
  35. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 2007; 45(8): 2723-5.
  36. McGettigan SE, Andreacchio K, Edelstein PH. Specificity of ertapenem susceptibility screening for detection of Klebsiella pneumoniae carbapenemases. J Clin Microbiol 2009; 47(3): 785-6.
  37. Woodford N, Dallow JW, Hill RL, Palepou MF, Pike R, Ward ME, et al. Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents 2007; 29(4): 456-9.