الگوی مقاومت آنتی‌بیوتیکی در سویه‌های کلبسیلا پنومونیه‌ی مولد بتا لاکتامازهای وسیع‌الطیف جدا شده از بیماران مبتلا به عفونت‌های ادراری

نوع مقاله : Original Article(s)

نویسنده

مدرس میکروب‌شناسی، دانشگاه آزاد اسلامی واحد شهرضا، عضو باشگاه پژوهشگران جوان و استعدادهای درخشان ایران، اصفهان، ایران

چکیده

مقدمه: عفونت مجاری ادراری دومین عفونت شایع در انسان است. عمده‌ترین باکتری‌های عامل عفونت ادراری، باکتری‌های موجود در روده هستند. کلبسیلا پنومونیه از جمله پاتوژن‌های فرصت‌ طلب و عامل عفونت بیمارستانی محسوب می‌شود. شیوع b-لاکتامازهای وسیع‌الطیف (ESBLs یا Extended-spectrum beta-lactamases) در سویه‌های کلبسیلا پنومونیه منجر به گسترش مقاومت‌های آنتی‌بیوتیکی و مرگ و میر در بیماران می‌گردد. این مطالعه به بررسی مقاومت به آنتی‌بیوتیک در سویه‌های کلبسیلای دارای ESBLs که از ادرار بیماران مبتلا به عفونت ادراری جدا شده بودند، پرداخت.روش‌ها: مطالعه‌‌ی حاضر در سال ‌های 1388 و 1389 در آزمایشگاه‌های بیمارستان‌های الزهرا (س)،‌ شریعتی، کاشانی، مهدیه و آزمایشگاه رفرانس در اصفهان انجام گرفت. بر اساس فرمول حجم نمونه به طور تصادفی 378 نمونه از عفونت‌های ادراری ارزیابی گردید. شناسایی باکتری‌ها بر اساس روش‌های میکروبیولوژیک مانند رنگ‌آمیزی، محیط‌های افتراقی و بررسی تولید ESBLs با تست‌های غربال‌گری و تست تأییدی انجام شد. برای بررسی الگوی مقاومت آنتی‌بیوتیکی از روش Kirby Bauer استفاده شد.یافته‌ها: از 378 نمونه‌ی بررسی شده، فراوانی ESBLs در سویه‌های کلبسیلا پنومونیه جدا شده از بیماران بستری و سرپایی به ترتیب 64 و 22 درصد بود. بر اساس نتایج آنتی‌بیوگرام به ترتیب 5/90 درصد، 65 درصد، 1/57 درصد، 60 درصد، 6/31 درصد، صفر درصد، 35 درصد، 6/78 درصد و 19 درصد از سویه‌های کلبسیلا پنومونیه‌ی جدا شده از ادرار بیماران بستری در برابر آمپی‌سیلین، سفتازیدیم، سفوتاکسیم، سفپیم، آمیکاسین، ایمی‌پنم، سیپروفلوکسازین، کوتریموکسازول و نیتروفورانتویین و 6/70 درصد، 7/41 درصد، 24 درصد، 15 درصد، 0 درصد، 4/21 درصد، 6/28 درصد، 8/18 درصد، 9/25 درصد و 6/34 درصد از سویه‌های کلبسیلا پنومونیه‌ی جدا شده از بیماران سرپایی در برابر آمپی‌سیلین، سفازولین، سفتازیدیم، سفوتاکسیم، آمیکاسین، جنتامایسین، نالیدیکسیک اسید، سیپروفلوکسازین، کوتریموکسازول و نیتروفورانتویین مقاوم بودند.نتیجه‌گیری: نتایج حاکی از فراوانی بیشتر ESBLs و همچنین شیوع بیشتر مقاومت آنتی‌بیوتیکی در باکتری‌های جدا شده از بیماران بستری در مقایسه‌ی با بیماران سرپایی بود. شاید مهم‌ترین علت برای این مشکل، عدم شناسایی سویه‌های مولد ESBL در آزمایشگاه‌ها و تجویز سفالوسپورین‌ها و آزترئونام برای بیماران مبتلا باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Antibiotic Resistant Pattern in ESBLs Producer Klebsiella Pneumoniae Strains Isolated of Hospitalized and Out Patients Acquired Urinary Tract Infection

نویسنده [English]

  • Shila Jalalpoor
Lecturer of Microbiology, Islamic Azad University, Shahreza Branch, Membership of Young Researchers Club, Isfahan, Iran
چکیده [English]

Background: Urinary tract infection (UTI) is the second most common infection in human. Klebsiella pneumoniae is an opportunistic pathogen bacteria, that accounts for nosocomial infections. Prevalence of extended-spectrum beta lactamase (ESBLs) in K. pneumoniae strains led to the spread of antibiotic resistance and mortality in patients. This study was done to evaluate the resistance to antibiotics in K. pneumoniae isolated from urinary tract infections.Methods: This study was performed in Alzahra, Shariaty, Kashany, Mahdieh hospitals and References laboratories during 2009-2010 in Isfahan. According to statistical formula, 378 urine samples of patients with UTI were evaluated. Bacterial identification was performed with microbiological methods, including gram staining, differential environment and ESBLs production with screening and confirmatory tests. Antibiotics resistant pattern was performed with Kirby Bauer method.Finding: From 378 sample, frequency of ESBLs in K. pneumoniae strains isolated in hospitalized and out patients was 64% and 22% respectively. According to antibiogram results 90.5%, 65%, 57.1%, 60%, 31.6%, 0%, 35%, 78.6% and 19% of K.pneumoniae strains isolated in hospitalized patients were resistant to Ampicillin, Ceftazidime, Cefotaxime, Cefepime, Amikacin, Imipenem, Ciprofloxacin, Trimethoprim/ Sulfamethoxazole and Nitrofurantoin respectively and 70.6%, 41.7%, 24%, 15%, 0%, 21.4%, 28.6%, 18.5%, 25.9% and 34.6% of K. pneumoniae strains isolated in out patients were resistant to Ampicillin, Cefazolin, Ceftazidime, Cefotaxime, Amikacin, Gentamicin, Nalidixic acid, Ciprofloxacin, Trimethoprim/ Sulfamethoxazole and Nitrofurantoin. Conclusion: The results showed that frequency of ESBLs and antibiotic resistant in isolated bacteria from hospitalized patients was more prevalence than isolated bacteria from out patients. Perhaps the most important reason for this problem is unidentifying of ESBLs producer strains in laboratories and cephalosporins and Aztreonam prescription in UTI patients.

کلیدواژه‌ها [English]

  • Antibiotic resistant
  • Klebsiella pneumonia
  • Extended-spectrum beta lactamase
  • Urinary tract infection
  • Iran
  1. Bergus G. Urinary tract infections in pregnancy. In: Yankowitz J, Niebyl JR, editors. Drug Therapy in Pregnancy. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 63-72.
  2. Stanton SL, Dwyer PL. Urinary tract infection in the female. London: Martin Dunitz; 2000. p. 304.
  3. Kunin CM. Urinary tract infections: detection, prevention, and management. Philadelphia: Williams & Wilkins; 1997. p. 2.
  4. Habash MB, Van der Mei HC, Busscher HJ, Reid G. The effect of water, ascorbic acid, and cranberry derived supplementation on human urine and uropathogen adhesion to silicone rubber. Can J Microbiol 1999; 45(8): 691-4.
  5. Perinatal group B streptococcal disease after universal screening recommendations--United States, 2003-2005. MMWR Morb Mortal Wkly Rep 2007; 56(28): 701-5.
  6. Kaye KS, Kaye D. Multidrug-resistant pathogens: Mechanisms of resistance and epidemiology. Current Infectious Disease Reports 2005; 2(5): 391-8.
  7. Jalal Pour SH, Kasra Kermanshahi R, Nouhi AS, Zarkesh Isfahani H. Comparing the Frequency of â-lactamase Enzyme in Isolated Nosocomial Infectious Bacteria. Zahedan Journal of Research in Medical Sciences 2010; 12(4): 3-10.
  8. Agrawal P, Ghosh AN, Kumar S, Basu B, Kapila K. Prevalence of extended-spectrum beta-lactamases among Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital. Indian J Pathol Microbiol 2008; 51(1): 139-42.
  9. Hopley L, Schalkwyk JV. Mechanisms of resistance to antimicrobials. Date of Last [Online]. 2005 [cited 2006 Nov 24]; Available from: URL: http://anaesthetist.com/icu/infect/Findex.htm#resist.htm/
  10. Larson LL, Ramphal R. Extended-spectrum beta-lactamases. Semin Respir Infect 2002; 17(3): 189-94.
  11. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn RG. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother 1999; 44(3): 377-80.
  12. Mendelson G, Hait V, Ben Israel J, Gronich D, Granot E, Raz R. Prevalence and risk factors of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in an Israeli long-term care facility. Eur J Clin Microbiol Infect Dis 2005; 24(1): 17-22.
  13. Bush K. Is it important to identify extended-spectrum beta-lactamase-producing isolates? Eur J Clin Microbiol Infect Dis 1996; 15(5): 361-4.
  14. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14(4): 933-51, table.
  15. Thomson KS, Sanders CC. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 1992; 36(9): 1877-82.
  16. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
  17. Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002; 46(5): 1481-91.
  18. Lytsy B, Sandegren L, Tano E, Torell E, Andersson DI, Melhus A. The first major extended-spectrum beta-lactamase outbreak in Scandinavia was caused by clonal spread of a multiresistant Klebsiella pneumoniae producing CTX-M-15. APMIS 2008; 116(4): 302-8.
  19. Jalal Pour SH, Kasra Kermanshahi R, Noohi A, Zarkesh H. Study of -lactamase and S-layer Production in some of Isolated Pathogen Bacteria From Clinical and Environmental Hospital Samples, [MSc Thesis] Tehran: Tehran Science and Research Branch Islamic Azad University 2007.
  20. National Nosocomial Infection Serviles System (NNIS). Tehran: Ministry of Health; 2009.
  21. Wikler MA, Cockerill FR, Craig WA, Dudley MN, Eliopoulos GM, Hecht DW. Performance standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute 2009; 29(3): 32-44.
  22. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med 2004; 140(1): 26-32.
  23. Gordon KA, Jones RN. Susceptibility patterns of orally administered antimicrobials among urinary tract infection pathogens from hospitalized patients in North America: comparison report to Europe and Latin America. Results from the SENTRY Antimicrobial Surveillance Program (2000). Diagn Microbiol Infect Dis 2003; 45(4): 295-301.
  24. Mirsalehian A, Nakhjavani F. Prevalence of ESBLs Producing Enterobacteria in Intensive Care Ynits. Proceedings of the 8th Iranian National Congress of Microbiology; 2006 May 23–25; Isfahan, Iran; 2006. p. 15.
  25. Winokur PL, Canton R, Casellas JM, Legakis N. Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis 2001; 32 (Suppl 2): S94-103.
  26. Jain A, Roy I, Gupta MK, Kumar M, Agarwal SK. Prevalence of extended-spectrum beta-lactamase-producing Gram-negative bacteria in septicemia neonates in a tertiary care hospital. J Med Microbiol 2003; 52(Pt 5): 421-5.
  27. Tankhiwale SS, Jalgaonkar SV, Ahamad S, Hassani U. Evaluation of extended spectrum beta lactamase in urinary isolates. Indian J Med Res 2004; 120(6): 553-6.
  28. Manchanda V, Singh NP, Goyal R, Kumar A, Thukral SS. Phenotypic characteristics of clinical isolates of Klebsiella pneumoniae & evaluation of available phenotypic techniques for detection of extended spectrum beta-lactamases. Indian J Med Res 2005; 122(4): 330-7.
  29. Luzzaro F, Mezzatesta M, Mugnaioli C, Perilli M, Stefani S, Amicosante G, et al. Trends in production of extended-spectrum beta-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J Clin Microbiol 2006; 44(5): 1659-64.
  30. Xiong Z, Zhu D, Zhang Y, Wang F. [Extended-spectrum beta-lactamase in Klebsiella pneumoniae and Escherichia coli isolates]. Zhonghua Yi Xue Za Zhi 2002; 82(21): 1476-9.
  31. Cordero L, Rau R, Taylor D, Ayers LW. Enteric gram-negative bacilli bloodstream infections: 17 years' experience in a neonatal intensive care unit. Am J Infect Control 2004; 32(4): 189-95.
  32. Goossens H. MYSTIC program: summary of European data from 1997 to 2000. Diagn Microbiol Infect Dis 2001; 41(4): 183-9.
  33. Endimiani A, Paterson DL. Optimizing therapy for infections caused by enterobacteriaceae producing extended-spectrum beta-lactamases. Semin Respir Crit Care Med 2007; 28(6): 646-55.
  34. Mehrgan H, Rahbar M, Arab-Halvaii Z. High prevalence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a tertiary care hospital in Tehran, Iran. J Infect Dev Ctries 2010; 4(3): 132-8.
  35. Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin Infect Dis 2001; 33(8): 1288-94.
  36. Richard P, Delangle MH, Raffi F, Espaze E, Richet H. Impact of fluoroquinolone administration on the emergence of fluoroquinolone-resistant gram-negative bacilli from gastrointestinal flora. Clin Infect Dis 2001; 32(1): 162-6.
  37. Tsering DC, Das S, Adhiakari L, Pal R, Singh TS. Extended Spectrum Beta-lactamase Detection in Gram-negative Bacilli of Nosocomial Origin. J Glob Infect Dis 2009; 1(2): 87-92.
  38. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002; 136(11): 834-44.