تأثیر دیابت مادری بر تکامل سیستم عصبی مرکزی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، گروه علوم تشریح و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه علوم تشریح و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 استادیار، گروه علوم تشریح، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

چکیده

دیابت حاملگی، یکی از شایع‌ترین و مهم‌ترین اختلالات متابولیک است و می‌تواند باعث چندین ناهنجاری جنینی شود. افزایش قند خون در مادر، می‌تواند اثرات تراتوژنیک بر تکامل سیستم اعصاب مرکزی جنین داشته باشد. شواهد متعددی مشخص کرده است که بچه‌های متولد شده از مادران مبتلا به دیابت، اختلال در رفتار و عملکردهای هوشی را نشان می‌دهند. تشکیلات هیپوکامپ، یکی از نواحی حساس به گلوکز و ناحیه‌ی اصلی در تشکیل و تداوم حافظه‌ی درازمدت است. نوروژنز نیز در هیپوکامپ زمینه‌ی اصلی برای پلاستیسیتی نورونی بوده و با تشکیل حافظه و عملکردهای شناختی در ارتباط است. در این مقاله‌ی مروری، به بررسی اثرات دیابت بر سیستم عصبی در دوره‌ی بارداری پرداخته می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Maternal Diabetes on Developing of Central Nervous System

نویسندگان [English]

  • Akram Sadeghi 1
  • Shahnaz Razavi 2
  • Javad Hami 3
  • Ebrahim Esfandiary 2
1 PhD Student, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Assistant Professor, Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
چکیده [English]

Diabetes in pregnancy is the most common and the most important metabolic condition, since it can result in several fetal malformations. Maternal hyperglycemia may have teratogenic effect for developing of fetal central nervous system (CNS). Several lines of evidence indicate that the children born to diabetic mothers, exhibit disturbances in behavioral and intellectual functioning. The hippocampus subserves important behavioral and physiological functions such as memory consolidation, and is a brain structure particularly vulnerable to changes in glucose concentration. Hippocampal neurogenesis might underlie particular aspects of neuronal plasticity and might play an important role for the memory and cognitive functions. We reviewed the current understanding of the effect of diabetes on developing of central nervous system during the pregnancy.

کلیدواژه‌ها [English]

  • Maternal diabetes
  • Neurogenesis
  • Hippocampus
  • Rat neonate
  1. Aerts L, van Assche FA. Rat foetal endocrine pancreas in experimental diabetes. J Endocrinol 1977; 73(2): 339-46.
  2. Giugliano D, Marfella R, Coppola L, Verrazzo G, Acampora R, Giunta R, et al. Vascular effects of acute hyperglycemia in humans are reversed by L-arginine. Evidence for reduced availability of nitric oxide during hyperglycemia. Circulation 1997; 95(7): 1783-90.
  3. Banhidy F, Acs N, Puho EH, Czeizel AE. Congenital abnormalities in the offspring of pregnant women with type 1, type 2 and gestational diabetes mellitus: a population-based case-control study. Congenit Anom (Kyoto) 2010; 50(2): 115-21.
  4. Hunt KJ, Schuller K. The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am 2007; 34(2): 173-vii.
  5. Rother KI. Diabetes treatment--bridging the divide. N Engl J Med 2007; 356(15): 1499-501.
  6. Lawrence JM, Contreras R, Chen W, Sacks DA. Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999-2005. Diabetes Care 2008; 31(5): 899-904.
  7. Cederberg J, Picard J, Eriksson JU. Maternal diabetes in the rat impairs the formation of neural-crest derived cranial nerve ganglia in the offspring. Diabetologia 2003; 46(9): 1245-51.
  8. Hatfield L, Schwoebel A, Lynyak C. Caring for the infant of a diabetic mother. MCN Am J Matern Child Nurs 2011; 36(1): 10-6.
  9. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27(5): 1047-53.
  10. Jiang HL, Niu JJ, Zhang WF, Huang WJ, Zhou MY, Sha WJ, et al. The role of central nervous system on hypoglycemia and the feasibility of the brain theory in traditional Chinese medicine on treatment of diabetes mellitus. J Integr Med 2014; 12(1): 1-6.
  11. Charnogursky G, Lee H, Lopez N. Diabetic neuropathy. Handb Clin Neurol 2014; 120: 773-85.
  12. Wang D, Couture R, Hong Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 2014; 728: 59-66.
  13. Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep 2014; 14(8): 473.
  14. Tehranipour M, Khakzad MR. Effect of maternal diabetes on hippocampus neuronal density in neonatal rats. Journal of Biological Sciences 2008; 8: 1027-32.
  15. Aragno M, Parola S, Brignardello E, Mauro A, Tamagno E, Manti R, et al. Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes 2000; 49(11): 1924-31.
  16. Artola A. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex--the same metaplastic process? Eur J Pharmacol 2008; 585(1): 153-62.
  17. Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl) 2004; 82(8): 510-29.
  18. Cousins L. Etiology and prevention of congenital anomalies among infants of overt diabetic women. Clin Obstet Gynecol 1991; 34(3): 481-93.
  19. Meur S, Mann NP. Infant outcomes following diabetic pregnancies. Paediatrics and Child Health 2007; 17(6): 217-22.
  20. Eriksson UJ, Borg LA. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 1993; 42(3): 411-9.
  21. Lee AT, Reis D, Eriksson UJ. Hyperglycemia-induced embryonic dysmorphogenesis correlates with genomic DNA mutation frequency in vitro and in vivo. Diabetes 1999; 48(2): 371-6.
  22. Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, et al. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 1995; 173(4): 1036-41.
  23. Wentzel P, Thunberg L, Eriksson UJ. Teratogenic effect of diabetic serum is prevented by supplementation of superoxide dismutase and N-acetylcysteine in rat embryo culture. Diabetologia 1997; 40(1): 7-14.
  24. Schwartz R, Teramo KA. Effects of diabetic pregnancy on the fetus and newborn. Semin Perinatol 2000; 24(2): 120-35.
  25. Lepercq J. Pre-existing diabetes and pregnancy. Rev Prat 2012; 62(7): 917-20. [In French].
  26. Pedersen O, Beck-Nielsen H, Klebe JG. Insulin receptors in the pregnant diabetic and her newborn. J Clin Endocrinol Metab 1981; 53(6): 1160-6.
  27. Salvesen DR, Freeman J, Brudenell JM, Nicolaides KH. Prediction of fetal acidaemia in pregnancies complicated by maternal diabetes mellitus by biophysical profile scoring and fetal heart rate monitoring. Br J Obstet Gynaecol 1993; 100(3): 227-33.
  28. Schwartz R, Gruppuso PA, Petzold K, Brambilla D, Hiilesmaa V, Teramo KA. Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care 1994; 17(7): 640-8.
  29. Freinkel N. Diabetic embryopathy and fuel-mediated organ teratogenesis: lessons from animal models. Horm Metab Res 1988; 20(8): 463-75.
  30. Widness JA, Susa JB, Garcia JF, Singer DB, Sehgal P, Oh W, et al. Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J Clin Invest 1981; 67(3): 637-42.
  31. Teramo KA, Widness JA, Clemons GK, Voutilainen P, McKinlay S, Schwartz R. Amniotic fluid erythropoietin correlates with umbilical plasma erythropoietin in normal and abnormal pregnancy. Obstet Gynecol 1987; 69(5): 710-6.
  32. Petry CD, Eaton MA, Wobken JD, Mills MM, Johnson DE, Georgieff MK. Iron deficiency of liver, heart, and brain in newborn infants of diabetic mothers. J Pediatr 1992; 121(1): 109-14.
  33. Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol 1998; 44(4): 665-75.
  34. Eidelman AI, Samueloff A. The pathophysiology of the fetus of the diabetic mother. Semin Perinatol 2002; 26(3): 232-6.
  35. Yoon B, Jun JK, Romero R, Park K, Gomez R, Choi J, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1ß, and tumor necrosis factor-a), neonatal brain white matter lesions, and cerebral palsy. American Journal of Obstetrics and Gynecology, 1997; 177(1): 19-26.
  36. Rudge MV, Calderon IM, Ramos MD, Abbade JF, Rugolo LM. Perinatal outcome of pregnancies complicated by diabetes and by maternal daily hyperglycemia not related to diabetes. A retrospective 10-year analysis. Gynecol Obstet Invest 2000; 50(2): 108-12.
  37. Hawthorne G, Robson S, Ryall EA, Sen D, Roberts SH, Ward Platt MP. Prospective population based survey of outcome of pregnancy in diabetic women: results of the Northern Diabetic Pregnancy Audit, 1994. BMJ 1997; 315(7103): 279-81.
  38. Casson IF, Clarke CA, Howard CV, McKendrick O, Pennycook S, Pharoah PO, et al. Outcomes of pregnancy in insulin dependent diabetic women: results of a five year population cohort study. BMJ 1997; 315(7103): 275-8.
  39. Michael WA. Offspring of diabetic pregnancy: short-term outcomes. Semin Fetal Neonatal Med 2009; 14(2): 111-8.
  40. Penney GC, Mair G, Pearson DW. Outcomes of pregnancies in women with type 1 diabetes in Scotland: a national population-based study. BJOG 2003; 110(3): 315-8.
  41. Martinez-Frias ML. Epidemiological analysis of outcomes of pregnancy in diabetic mothers: identification of the most characteristic and most frequent congenital anomalies. Am J Med Genet 1994; 51(2): 108-13.
  42. Rizzo T, Freinkel N, Metzger BE, Hatcher R, Burns WJ, Barglow P. Correlations between antepartum maternal metabolism and newborn behavior. Am J Obstet Gynecol 1990; 163(5 Pt 1): 1458-64.
  43. Haghir H, Rezaee AA, Sankian M, Kheradmand H, Hami J. The effects of induced type-I diabetes on developmental regulation of insulin & insulin like growth factor-1 (IGF-1) receptors in the cerebellum of rat neonates. Metab Brain Dis 2013; 28(3): 397-410.
  44. Ornoy A, Ratzon N, Greenbaum C, Peretz E, Soriano D, Dulitzky M. Neurobehaviour of school age children born to diabetic mothers. Arch Dis Child Fetal Neonatal Ed 1998; 79(2): F94-F99.
  45. Mulder EJ, Visser GH. Growth and motor development in fetuses of women with type-1 diabetes. I. Early growth patterns. Early Hum Dev 1991; 25(2): 91-106.
  46. Ornoy A, Ratzon N, Greenbaum C, Wolf A, Dulitzky M. School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J Pediatr Endocrinol Metab 2001; 14(Suppl 1): 681-9.
  47. Ratzon N, Greenbaum C, Dulitzky M, Ornoy A. Comparison of the motor development of school-age children born to mothers with and without diabetes mellitus. Phys Occup Ther Pediatr 2000; 20(1): 43-57.
  48. Petersen MB, Pedersen S, Greisen G, Pedersen J, Molsted-Pedersen L. Early growth delay in diabetic pregnancy: relation to psychomotor development at age 4. Br Med J 1988; 296(6622): 598-600.
  49. Kainer F, Prechtl HF, Engele H, Einspieler C. Assessment of the quality of general movements in fetuses and infants of women with type-I diabetes mellitus. Early Hum Dev 1997; 50(1): 13-25.
  50. Yssing M. Long-term prognosis of children born to mothers diabetic when pregnant. In: Camerini-Davalos R, Cole HS, editors. Early diabetes in early life. New York, NY: Academic Press, 1975. p. 575-86.
  51. Deregnier RA, Nelson CA, Thomas KM, Wewerka S, Georgieff MK. Neurophysiologic evaluation of auditory recognition memory in healthy newborn infants and infants of diabetic mothers. J Pediatr 2000; 137(6): 777-84.
  52. Haworth JC, McRae KN, Dilling LA. Prognosis of infants of diabetic mothers in relation to neonatal hypoglycaemia. Dev Med Child Neurol 1976; 18(4): 471-9.
  53. Rizzo T, Metzger BE, Burns WJ, Burns K. Correlations between antepartum maternal metabolism and child intelligence. N Engl J Med 1991; 325(13): 911-6.
  54. Stehbens JA, Baker GL, Kitchell M. Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am J Obstet Gynecol 1977; 127(4): 408-13.
  55. Churchill JA, Berendes H, Nemore J. Neuropsychological deficits in children of diabetic mothers. American Journal of Obstetrics and Gynecology 1969; 105(2): 257-68.
  56. Sells CJ, Robinson NM, Brown Z, Knopp RH. Long-term developmental follow-up of infants of diabetic mothers. J Pediatr 1994; 125(1): S9-17.
  57. Georgieff MK. The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. Minn Med 2006; 89(3): 44-7.
  58. Rizzo TA, Ogata ES, Dooley SL, Metzger BE, Cho NH. Perinatal complications and cognitive development in 2- to 5-year-old children of diabetic mothers. Am J Obstet Gynecol 1994; 171(3): 706-13.
  59. Yamashita Y, Kawano Y, Kuriya N, Murakami Y, Matsuishi T, Yoshimatsu K, et al. Intellectual development of offspring of diabetic mothers. Acta Paediatr 1996; 85(10): 1192-6.
  60. Nelson CA, Wewerka S, Thomas KM, Tribby-Walbridge S, de Regnier R, Georgieff M. Neurocognitive sequelae of infants of diabetic mothers. Behav Neurosci 2000; 114(5): 950-6.
  61. Hami J, Sadr-Nabavi A, Sankian M, Balali-Mood M, Haghir H. The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Struct Funct 2013; 218(1): 73-84.
  62. Kinney BA, Rabe MB, Jensen RA, Steger RW. Maternal hyperglycemia leads to gender-dependent deficits in learning and memory in offspring. Exp Biol Med (Maywood) 2003; 228(2): 152-9.
  63. McNay EC, Fries TM, Gold PE. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci U S A 2000; 97(6): 2881-5.
  64. Golalipour MJ, Kafshgiri SK, Ghafari S. Gestational diabetes induced neuronal loss in CA1 and CA3 subfields of rat hippocampus in early postnatal life. Folia Morphol (Warsz) 2012; 71(2): 71-7.
  65. Lagace DC, Donovan MH, de Carolis NA, Farnbauch LA, Malhotra S, Berton O, et al. Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. PNAS 2009; 107(9): 4436-41.
  66. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124(3): 319-35.
  67. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-7.
  68. Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 2002; 22(3): 635-8.
  69. Goldman SA. Adult neurogenesis: from canaries to the clinic. J Neurobiol 1998; 36(2): 267-86.
  70. Kempermann G, Wiskott L, Gage FH. Functional significance of adult neurogenesis. Curr Opin Neurobiol 2004; 14(2): 186-91.
  71. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001; 410(6826): 372-6.
  72. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002; 415(6875): 1030-4.
  73. Hine RJ, Das GD. Neuroembryogenesis in the hippocampal formation of the rat. An autoradiographic study. Z Anat Entwicklungsgesch 1974; 144(2): 173-86.
  74. Muramatsu R, Ikegaya Y, Matsuki N, Koyama R. Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 2007; 148(3): 593-8.
  75. Bayer SA. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 1980; 190(1): 87-114.
  76. Schlessinger AR, Cowan WM, Gottlieb DI. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 1975; 159(2): 149-75.
  77. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, et al. Genomic anatomy of the hippocampus. Neuron 2008; 60(6): 1010-21.
  78. Brewer GJ. Regeneration and proliferation of embryonic and adult rat hippocampal neurons in culture. Exp Neurol 1999; 159(1): 237-47.
  79. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004; 44: 399-421.
  80. de Carolis NA, Eisch AJ. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010; 58(6): 884-93.