افزایش نفوذ نانوذرات طلا به داخل رده‌های سلولی سرطانی بر اثر اتصال با پپتید TAT

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 گروه نانو بیوتکنولوژی، دانشکده‌ی علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 استاد، گروه بیوشیمی، دانشکده‌ی علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

3 استاد، بخش بیوتکنولوژی، مؤسسه‌ی تحقیقات واکسن و سرم‌سازی رازی، کرج، ایران

4 استادیار، گروه نانو بیوتکنولوژی، دانشکده‌ی علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مقدمه: نانوذرات طلا (GNPs یا Gold nanoparticles) با داشتن خصوصیاتی نظیر عدم سمیت، سنتز آسان و قابلیت اتصال به پپتیدهای نفوذ کننده در سلول (CPPs یا Cell penetrating peptides)، برای اهدافی نظیر رهایش هدفمند و تصویربرداری زیستی مناسب می‌باشند.روش‌ها: مطالعه‌ی حاضر، افزایش جذب نانوذره‌ی طلا در سلول بر اثر اتصال به پپتید TAT را نشان می‌دهد. نانوذرات طلا پس از اتصال به پپتید با استفاده از روش‌های طیف‌سنجی فرابنفش- مرئی (Ultraviolet-visible spectrophotometry)، عکس‌برداری TEM (Transmission electron microscopy)، روش تفرق نور پویا (DLS یا Dynamic light scattering) و زتا پتانسیل (Zeta potential) توصیف شدند. سپس سیتوتوکسیسیتی نانوذرات طلا در برابر سلول‌های HeLa و A431 مورد مطالعه قرار گرفت. در آخر، جذب نانوذره‌ی متصل به پپتید TAT (TAT-C-GNP) در سلول‌ها بررسی شد.یافته‌ها: اثر سیتوتوکسیسیتی GNP و TAT-C-GNP بر روی سلول‌ها بسیار ناچیز بود. پس از تیمار سلول‌ها با نانوذرات طلا، رده‌ی سلولی A431 مقدار زیادی از TAT-C-GNP را نسبت به GNP جذب کرد. در حالی که در رده‌ی سلولی HeLa هیچ یک از ذرات GNP و TAT-C-GNP جذب نشدند.نتیجه‌گیری: نتایج به دست آمده نشان داد که TAT-C-GNP می‌تواند جذب نانوذره‌ی طلا را در سلول افزایش دهد و نانوکنژوگه‌ی مناسبی در جهت اهداف مختلف زیست‌پزشکی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Enhanced Intracellular Translocation of Gold Nanoparticles Functionalized with TAT Peptide into Cancer Cell Lines

نویسندگان [English]

  • Sedigheh Khamehchian 1
  • Saman Hosseinkhani 2
  • Rasool Madani 3
  • Maryam Nikkhah 4
1 Department of Nanotechnology, School of Biological Science, Tarbiat Modares University, Tehran, Iran
2 Professor Department of Biochemistry, School of Biological Science, Tarbiat Modares University, Tehran, Iran
3 Professor, Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
4 Assistant Professor, Department of Nanotechnology, School of Biological Science, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Background: Reduced toxicity and ease of modification make gold nanoparticles (GNPs) suitable for targeted delivery and bioimaging via conjugating cell-penetrating peptides (CPPs). This study aimed to assess the enhanced penetration of gold nanoparticles into cells via using TAT peptide as a cell-penetrating peptide.Methods: Gold nanoparticles and TAT-conjugated gold nanoparticles (TAT-C-GNP) were characterized using ultraviolet-visible spectrophotometry, dynamic light scattering, zeta potential method, and transmission electron microscopy. The cytotoxicity effects of nanoparticles on HeLa, and A431 cell lines were studied. Uptake of TAT-conjugated gold nanoparticles was tested in cells, using dark field microscopy.Findings: Gold nanoparticles and TAT-conjugated gold nanoparticles had little to no effect on cell viability. Upon exposure to gold nanoparticles, TAT-conjugated gold nanoparticles displayed higher uptake than gold nanoparticles in A431 cell line; whereas none of the nanoparticles showed penetration in HeLa cell.Conclusion: Thus, TAT-conjugated gold nanoparticles have enhanced cellular internalization and are suitable for various biomedical applications as nanoconjugates.

کلیدواژه‌ها [English]

  • Gold nanoparticle
  • Cell penetration peptide
  • Cellular uptake
  • Cytotoxicity
  1. Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res 2006; 67(1): 47-54.
  2. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
  3. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005; 1(3): 325-7.
  4. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 2011; 149(1): 65-71.
  5. Nelson CE, Kintzing JR, Hanna A, Shannon JM, Gupta MK, Duvall CL. Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano 2013; 7(10): 8870-80.
  6. Hou KK, Pan H, Ratner L, Schlesinger PH, Wickline SA. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano 2013; 7(10): 8605-15.
  7. Jin E, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc 2013; 135(2): 933-40.
  8. Chanda N, Kattumuri V, Shukla R, Zambre A, Katti K, Upendran A, et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc Natl Acad Sci USA 2010; 107(19): 8760-5.
  9. Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 2011; 1(1): 31-63.
  10. Bartczak D, Muskens OL, Sanchez-Elsner T, Kanaras AG, Millar TM. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles. ACS Nano 2013; 7(6): 5628-36.
  11. Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug Chem 2007; 18(5): 1490-7.
  12. Wang C, Wang J, Liu D, Wang Z. Gold nanoparticle-based colorimetric sensor for studying the interactions of beta-amyloid peptide with metallic ions. Talanta 2010; 80(5): 1626-31.
  13. Hoyer J, Neundorf I. Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res 2012; 45(7): 1048-56.
  14. Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 2005; 62(16): 1839-49.
  15. Hao X, Wu J, Shan Y, Cai M, Shang X, Jiang J, et al. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J Phys Condens Matter 2012; 24(16): 164207.
  16. Trabulo S, Cardoso AL, Mano M, De Lima MCP. Cell-penetrating peptides-mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals 2010; 3(4): 961-93.
  17. de la Fuente JM, Berry CC. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 2005; 16(5): 1176-80.
  18. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55(6): 1189-93.
  19. Karagiannis ED, Urbanska AM, Sahay G, Pelet JM, Jhunjhunwala S, Langer R, et al. Rational design of a biomimetic cell penetrating peptide library. ACS Nano 2013; 7(10): 8616-26.
  20. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, et al. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 2009; 17(1): 95-103.
  21. Tran NT, Wang TH, Lin CY, Tsai YC, Lai CH, Tai Y, et al. Direct synthesis of Rev peptide-conjugated gold nanoparticles and their application in cancer therapeutics. Bioconjug Chem 2011; 22(7): 1394-401.
  22. Sun L, Liu D, Wang Z. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir 2008; 24(18): 10293-7.
  23. Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 2004; 15(3): 482-90.
  24. Turkevich J. Colloidal gold. Part I. Gold Bull 1985; 18(3): 86-91.
  25. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269(14): 10444-50.
  26. Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997; 272(25): 16010-7.
  27. Fischer R, Fotin-Mleczek M, Hufnagel H, Brock R. Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem 2005; 6(12): 2126-42.
  28. Pujals S, Fernandez-Carneado J, Lopez-Iglesias C, Kogan MJ, Giralt E. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta 2006; 1758(3): 264-79.
  29. Levy R, Shaheen U, Cesbron Y, See V. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 2010; 1: 1-18.
  30. Khlebtsov BN, Khlebtsov NG. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 2011; 73(1): 118-27.
  31. Trono JD, Mizuno K, Yusa N, Matsukawa T, Yokoyama K, Uesaka M. Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-Ray Drug Delivery System. J Radiat Res 2011; 52(1): 103-9.