کاربردهای بالینی فن‌آوری کپسولاسیون سلولی در انتقال دارو و سلول

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، گروه بیوتکنولوژی دارویی، دانشکده‌ی داروسازی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، گروه بیوتکنولوژی دارویی، دانشکده‌ی داروسازی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: کپسوله کردن سلول، روشی است که به منظور محبوس کردن سلول‌ها در داخل پلیمرهای نیمه‌تراوا استفاده می‌شود. به دلیل نیمه‌تراوا بودن این پلیمرها، اکسیژن و مواد مغذی مورد نیاز سلول‌ها می‌توانند عبور کنند، اما سلول‌های سیستم ایمنی که می‌توانند سبب رد سلول‌های پیوند شده شوند، قادر به عبور نمی‌باشند. از زمان ابداع مفهوم کپسولاسیون سلولی، بسیاری از دانشمندان از این فن‌آوری بیوتکنولوژی به عنوان یک جایگزین امیدوار کننده برای محافظت از سلول‌های پیوندی در مقابل پاسخ ایمنی میزبان یاد می‌کنند. انگیزه‌ی اصلی ایجاد این روش، غلبه بر مشکلات موجود در رد پیوند است و در نتیجه، نیاز به استفاده‌ی طولانی مدت از داروهای سرکوب کننده‌ی سیستم ایمنی پس از پیوند عضو کاهش می‌یابد. در این مقاله، با جستجو در مقالات منتشر شده سعی شد مرور گذرایی بر تکنولوژی کپسولاسیون سلولی و کاربردهای آن در زمینه‌ی انتقال دارو و سلول جهت کاربردهای درمانی انجام شود.روش‌ها: جستجوی سایت Pubmed به منظور یافتن مقالات مرتبط انجام شد. تنها از مقالات انگلیسی استفاده شد.یافته‌ها: جنبه‌های مختلف تکنیک کپسولاسیون سلول در زمینه‌ی درمان بیماری‌ها، پیش‌زمینه‌ی تاریخی، یافته‌های پژوهشی و پارامترهای مهم دخیل در این روش، به صورت اجمالی بررسی شده است.نتیجه‌گیری: ویژگی‌های فن‌آوری کپسوله کردن سلول‌ها این اجازه را می‌دهد که بتوان از این فن‌آوری زیستی برای دارورسانی یا تحویل سلول استفاده کرد. در فن‌آوری کپسولاسیون سلولی، سلول‌های کپسوله شده، به عنوان کارخانه‌های سنتز کننده‌ی مولکول‌های درمانی مورد نظر عمل می‌کنند. با نگاه به آینده، انتظار می‌رود سلول‌درمانی با استفاده از کپسوله کردن سلول‌ها در داخل پلیمرهای نیمه‌تراوا، به طور قابل توجهی پیشرفت نماید. پتانسیل ذاتی و اثربخشی این تکنیک در زمینه‌ی محبوس‌سازی سلول‌ها با رونق گرفتن مهندسی بافت و پزشکی احیا کننده، به طور چشم‌گیری افزایش خواهد یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Clinical Applications of Cell Encapsulation Technology in Cell and Drug Delivery

نویسندگان [English]

  • Reza Ghavimi 1
  • Vajihe Akbari 2
1 PhD Student, Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Cell encapsulation is a method of entrapping cells in a semi-permeable polymer that allows influx of oxygen and nutrients, but effectively avoids immune cells and antibodies from reaching the graft, preventing rejection. Since the invention of cell encapsulation technology, many researchers bet on this biotechnology as a promising alternative to protect encapsulated cells from host immune response. The main purpose of technology is to solve the existing problem of transplant rejection and thus decrease the necessity of long-term use of immunosuppressant drugs after an organ transplant to reduce adverse effects. We carried out a search of published literature to review current information regarding cell encapsulation technology and how this technology could improve cell and drug delivery for therapeutic applications.Methods: A computer-based literature search was performed using PubMed for relevant publications. Only English-language papers were considered.Findings: Current concepts of cell encapsulation technology including a historical perspective, its application for the treatment of diseases, research findings, and important parameters involved in this technique were discussed.Conclusion: Different features of this technique would allow widening the applications from drug delivery to cell delivery. In this way, enclosed cells work as customized factories, synthesizing and releasing the desired therapeutic factor. Looking forward to the future, this technology is expected to evolve significantly. The substantial potential of cell encapsulation has increased with the boom in regenerative medicine and tissue engineering.

کلیدواژه‌ها [English]

  • Cell encapsulation
  • Drug delivery
  • Cell delivery
  • Regenartaive medicine
  1. Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Ciprofloxacin nano-niosomes for targeting intracellular infections: An in vitro evaluation. J Nanopart Res 2013; 15: 1556.
  2. Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Release studies on ciprofloxacin loaded non-ionic surfactant vesicles. Avicenna J Med Biotechnol 2015; 7(2): 69-75.
  3. Bisceglie V. Uber die antineoplastische Immunitat. J Cancer Res Clin Oncol 1934; 40(1): 122-40.
  4. Algire GH, Weaver JM, Prehn RT. Growth of cells in vivo in diffusion chambers. I. Survival of homografts in immunized mice. J Natl Cancer Inst 1954; 15(3): 493-507.
  5. Chang TM. Semipermeable microcapsules. Science 1964; 146(3643): 524-5.
  6. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210(4472): 908-10.
  7. Liu HW, Ofosu FA, Chang PL. Expression of human factor IX by microencapsulated recombinant fibroblasts. Hum Gene Ther 1993; 4(3): 291-301.
  8. Koo J, Chang TM. Secretion of erythropoietin from microencapsulated rat kidney cells: preliminary results. Int J Artif Organs 1993; 16(7): 557-60.
  9. Uludag H, Sefton MV. Microencapsulated human hepatoma (HepG2) cells: In vitro growth and protein release. J Biomed Mater Res 1993; 27(10): 1213-24.
  10. Cieslinski DA, David HH. Tissue engineering of a bioartificial kidney. Biotechnol Bioeng 1994; 43(7): 678-81.
  11. Colton CK. Implantable biohybrid artificial organs. Cell Transplant 1995; 4(4): 415-36.
  12. Aebischer P, Goddard M, Signore AP, Timpson RL. Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Exp Neurol 1994; 126(2): 151-8.
  13. de Vos P, Marchetti P. Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 2002; 8(8): 363-6.
  14. Haisch A, Groger A, Radke C, Ebmeyer J, Sudhoff H, Grasnick G, et al. Macroencapsulation of human cartilage implants: pilot study with polyelectrolyte complex membrane encapsulation. Biomaterials 2000; 21(15): 1561-6.
  15. Sun ZJ, Lv GJ, Li SY, Yu WT, Wang W, Xie YB, et al. Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. Appl Microbiol Biotechnol 2007; 75(6): 1419-27.
  16. Fiorina P, Folli F, Maffi P, Placidi C, Venturini M, Finzi G, et al. Islet transplantation improves vascular diabetic complications in patients with diabetes who underwent kidney transplantation: a comparison between kidney-pancreas and kidney-alone transplantation. Transplantation 2003; 75(8): 1296-301.
  17. Hilborn J, Bjursten LM. A new and evolving paradigm for biocompatibility. J Tissue Eng Regen Med 2007; 1(2): 110-9.
  18. Morch YA, Donati I, Strand BL, Skjak-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006; 7(5): 1471-80.
  19. Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009; 30(14): 2724-34.
  20. Orive G, Hernandez RM, Gascon AR, Igartua M, Pedraz JL. Encapsulated cell technology: from research to market. Trends Biotechnol 2002; 20(9): 382-7.
  21. Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM, et al. In vitro study of alginate-chitosan microcapsules: An alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett 2005; 27(5): 317-22.
  22. de Castro M, Orive G, Hernandez RM, Bartkowiak A, Brylak W, Pedraz JL. Biocompatibility and in vivo evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J Biomed Mater Res A 2009; 91(4): 1119-30.
  23. Baroli B. Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J Chem Technol Biotechnol 2006; 81(4): 491-9.
  24. Paul A, Cantor A, Shum-Tim D, Prakash S. Superior cell delivery features of genipin crosslinked polymeric microcapsules: Preparation, in vitro characterization and pro-angiogenic applications using human adipose stem cells. Mol Biotechnol 2011; 48(2): 116-27.
  25. Orive G, de Castro M, Kong HJ, Hernandez RM, Ponce S, Mooney DJ, et al. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J Control Release 2009; 135(3): 203-10.
  26. Chan BP, Hui TY, Yeung CW, Li J, Mo I, Chan GC. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 2007; 28(31): 4652-66.
  27. Ahmed TA, Dare EV, Hincke M. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 2008; 14(2): 199-215.
  28. Liu J, Zhou H, Weir MD, Xu HH, Chen Q, Trotman CA. Fast-degradable microbeads encapsulating human umbilical cord stem cells in alginate for muscle tissue engineering. Tissue Eng Part A 2012; 18(21-22): 2303-14.
  29. Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 2011; 32(18): 4205-10.
  30. Salmons B, Brandtner EM, Hettrich K, Wagenknecht W, Volkert B, Fischer S, et al. Encapsulated cells to focus the metabolic activation of anticancer drugs. Curr Opin Mol Ther 2010; 12(4): 450-60.
  31. Piller PE, Tomanin R, Salvalaio M, Friso A, Hortelano G, Marin O, et al. Encapsulated engineered myoblasts can cure Hurler syndrome: preclinical experiments in the mouse model. Gene Ther 2012; 19(4): 355-64.
  32. de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res 2004; 121(1): 141-50.
  33. Fallarino F, Luca G, Calvitti M, Mancuso F, Nastruzzi C, Fioretti MC, et al. Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. J Exp Med 2009; 206(11): 2511-26.
  34. Luca G, Calvitti M, Mancuso F, Falabella G, Arato I, Bellucci C, et al. Reversal of experimental Laron Syndrome by xenotransplantation of microencapsulated porcine Sertoli cells. J Control Release 2013; 165(1): 75-81.
  35. Bistoni G, Calvitti M, Mancuso F, Arato I, Falabella G, Cucchia R, et al. Prolongation of skin allograft survival in rats by the transplantation of microencapsulated xenogeneic neonatal porcine Sertoli cells. Biomaterials 2012; 33(21): 5333-40.
  36. Wilson JL, McDevitt TC. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnol Bioeng 2013; 110(3): 667-82.
  37. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276(5309): 71-4.
  38. Heile A, Brinker T. Clinical translation of stem cell therapy in traumatic brain injury: the potential of encapsulated mesenchymal cell biodelivery of glucagon-like peptide-1. Dialogues Clin Neurosci 2011; 13(3): 279-86.
  39. Kauer TM, Figueiredo JL, Hingtgen S, Shah K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat Neurosci 2012; 15(2): 197-204.
  40. Santos E, Pedraz JL, Hernandez RM, Orive G. Therapeutic cell encapsulation: ten steps towards clinical translation. J Control Release 2013; 170(1): 1-14.
  41. Massoud TF, Singh A, Gambhir SS. Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. AJNR Am J Neuroradiol 2008; 29(2): 229-34.
  42. DiCamillo PA, Weiss CR. MR-guided delivery and tracking of cellular therapeutics. Interventional magnetic resonance imaging. New York, NY: Springer; 2012. p. 423-43.
  43. Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, et al. Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 2007; 13(8): 986-91.
  44. Catena R, Santos E, Orive G, Hernandez RM, Pedraz JL, Calvo A. Improvement of the monitoring and biosafety of encapsulated cells using the SFGNESTGL triple reporter system. J Control Release 2010; 146(1): 93-8.
  45. Santos E, Larzabal L, Calvo A, Orive G, Pedraz JL, Hernandez RM. Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene. Biomaterials 2013; 34(4): 1442-51.
  46. Paek HJ, Campaner AB, Kim JL, Aaron RK, Ciombor DM, Morgan JR, et al. In vitro characterization of TGF-beta1 release from genetically modified fibroblasts in Ca(2+)-alginate microcapsules. ASAIO J 2005; 51(4): 379-84.
  47. Chen W, Zhou H, Weir MD, Bao C, Xu HH. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater 2012; 8(6): 2297-306.
  48. Acarregui A, Pedraz JL, Blanco FJ, Hernandez RM, Orive G. Hydrogel-based scaffolds for enclosing encapsulated therapeutic cells. Biomacromolecules 2013; 14(2): 322-30.
  49. Akbari V, Hendijani F, Feizi A, Varshosaz J, Fakhari Z, Morshedi S, et al. Efficacy and safety of oral insulin compared to subcutaneous insulin: a systematic review and meta-analysis. J Endocrinol Invest 2016; 39(2): 215-25.
  50. Calafiore R, Basta G. Artificial pancreas to treat type 1 diabetes mellitus. Methods Mol Med 2007; 140: 197-236.
  51. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 2008; 85(2): 573-82.
  52. Endres M, Wenda N, Woehlecke H, Neumann K, Ringe J, Erggelet C, et al. Microencapsulation and chondrogenic differentiation of human mesenchymal progenitor cells from subchondral bone marrow in Ca-alginate for cell injection. Acta Biomater 2010; 6(2): 436-44.
  53. Yamamoto M, Takahashi Y, Tabata Y. Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 2003; 24(24): 4375-83.
  54. Laguna GR, Tyers P, Barker RA. The search for a curative cell therapy in Parkinson's disease. J Neurol Sci 2008; 265(1-2): 32-42.
  55. Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson's disease: how can we make it work? Trends Neurosci 2005; 28(2): 86-92.
  56. Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG. The choroid plexus in the rise, fall and repair of the brain. Bioessays 2005; 27(3): 262-74.
  57. Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002; 177(1): 265-75.
  58. Akbari V, Sadeghi HM, Jafarian-Dehkordi A, Abedi D, Chou CP. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli. Protein Expr Purif 2015; 116: 66-74.
  59. Akbari V, Mir Mohammad SH, Jafrian-Dehkordi A, Abedi D, Chou CP. Functional expression of a single-chain antibody fragment against human epidermal growth factor receptor 2 (HER2) in Escherichia coli. J Ind Microbiol Biotechnol 2014; 41(6): 947-56.
  60. Sabel MS, Arora A, Su G, Mathiowitz E, Reineke JJ, Chang AE. Synergistic effect of intratumoral IL-12 and TNF-alpha microspheres: systemic anti-tumor immunity is mediated by both CD8+ CTL and NK cells. Surgery 2007; 142(5): 749-60.
  61. Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001; 19(1): 29-34.
  62. Teng H, Zhang Y, Wang W, Ma X, Fei J. Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells. Acta Biochim Biophys Sin (Shanghai ) 2007; 39(4): 278-84.
  63. Cirone P, Bourgeois JM, Chang PL. Antiangiogenic cancer therapy with microencapsulated cells. Hum Gene Ther 2003; 14(11): 1065-77.
  64. Cirone P, Bourgeois JM, Shen F, Chang PL. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells. Hum Gene Ther 2004; 15(10): 945-59.
  65. Templin C, Kotlarz D, Faulhaber J, Schnabel S, Grote K, Salguero G, et al. Ex vivo expanded hematopoietic progenitor cells improve cardiac function after myocardial infarction: role of beta-catenin transduction and cell dose. J Mol Cell Cardiol 2008; 45(3): 394-403.
  66. Madeddu P. Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol 2005; 90(3): 315-26.
  67. Jacobs J. Combating cardiovascular disease with angiogenic therapy. Drug Discov Today 2007; 12(23-24): 1040-5.
  68. Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS. Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 2008; 15(1): 40-8.
  69. Teramura Y, Iwata H. Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev 2010; 62(7-8): 827-40.
  70. Scanlon KJ. Cancer gene therapy: challenges and opportunities. Anticancer Res 2004; 24(2A): 501-4.
  71. Gao L, Fei J, Zhao J, Cui W, Cui Y, Li J. pH- and redox-responsive polysaccharide-based microcapsules with autofluorescence for biomedical applications. Chemistry 2012; 18(11): 3185-92.
  72. Ma MZ, Cheng DF, Ye JH, Zhou Y, Wang JX, Shi MM, et al. Microencapsulated tumor assay: evaluation of the nude mouse model of pancreatic cancer. World J Gastroenterol 2012; 18(3): 257-67.