پیشرفت‌های اخیر در روش‌ها و محلول‌های نگه‌دارنده‌ی اعضا به منظور استفاده در پیوند کبد و کلیه

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی پزشکی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

2 پزشکی عمومی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

3 دانشجوی دکتری تخصصی، گروه فارماکولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

4 پژوهشگر پسادکتری، گروه فارماکولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

5 دانشیار، گروه فارماکولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

مقدمه: با توجه به پیشرفت‌های اخیر در روش‌های جراحی پیوند، تعداد پیوند اعضا افزایش یافته است. روش و محلول نگهداری عضو پیوندی از عوامل تعیین کننده‌ی نتایج پیوند می‌باشند. در این مقاله‌ی مروری، نحوه‌ی نگهداری اعضای پیوندی و محلول‌های مورد استفاده در این خصوص مورد ارزیابی و مقایسه قرار می‌گیرند.روش‌ها: جستجو در بانک‌های داده‌ای PubMed، Science direct و Google scholar با کلید واژه‌های Preservation solutions،Organ transplantation ، Kidney، Pancreas و Liver صورت گرفت و نتایج انواع مطالعات انجام شده در این زمینه تا سال 2019 مورد بررسی قرار گرفت.یافته‌ها: هدف از ساخت محلول‌های نگه‌دارنده، به حداقل رساندن این آسیب‌ها با به حداقل رساندن تورم سلولی و فعالیت پمپ‌های غشایی و در عین حال، تأمین انرژی مورد نیاز سلول می‌باشد و همچنین، با توجه به شرایط کمبود عضو و گاهی فواصل مکانی طولانی که بین فرد دهنده و گیرنده‌ی عضو وجود دارد، مطالعات متعددی جهت بهینه کردن روش‌ها و محلول‌های نگه‌دارنده برای افزایش زمان نگهداری عضو در جریان است. محلول‌های ساخته شده بر پایه‌ی الکترولیت‌ها، آنتی‌اکسیدان‌ها و ساکاریدها می‌باشد. در حال حاضر، محققان بسیاری درصدد یافتن روش‌هایی برای بهینه کردن محلول با استفاده از مهار کننده‌های مرگ سلولی در سطح ژنی و پروتئینی نظیر siRNA اختصاصی برای کاسپازهای 3 و 8 می‌باشند.نتیجه‌گیری: با وجود تمام تلاش‌ها، این محلول‌ها کارایی کافی جهت نگهداری طولانی مدت عضو را ندارند. بنابراین، لازم است تغییراتی برای بهبود عملکرد هر چه بیشتر این روش‌ها و محلول‌ها ایجاد شود.

کلیدواژه‌ها


عنوان مقاله [English]

Recent Advances in Organ Preservation Solutions and Methods for Using in Liver and Kidney Transplantation

نویسندگان [English]

  • Zahra Jamadi 1
  • Parinaz Parhizgar 2
  • Ghasem Yazdanpanah 2
  • Tahereh Tayebi 3
  • Roghayeh Tarasi 4
  • Hassan Niknejad 5
چکیده [English]

Background: The organ transplantation has been developed due to recent advances in transplantation surgery. The method of preservation and the type of preserving solution are determining factors in the outcome of the transplantations. In this review article, we evaluated the process of organ preservation, and compared the employed storage solutions.Methods: The relevant articles published up to the end of 2019 were collected by searching in PubMed, Science Direct, and Google Scholar databases using terms “Preservation Solutions”, “Organ Transplantation”, “Kidney”, “Pancreas”, and “Liver”.Findings: The aim of developing preservation solutions is to minimize the damage through minimizing the cellular edema; decreasing the function of the membrane pumps, and supplying enough energy for viable cells. Additionally, the two problems of organ shortage for transplantation and time period from taking the organ in the procurement organization to delivering it to the transplant center are enough to encourage scientists to improve preservation methods and solutions for prolonging organ preservation time. The main building blocks of preservation solutions are electrolytes, antioxidants, and saccharides. Currently, there are many efforts to optimize solutions by employing cell death inhibitors such as specific siRNA for caspase 3 and caspase 8.Conclusion: In spite of all the efforts, these solutions do not have enough efficiency in preserving the organs for long periods. Hence, it is necessary to optimize preservation methods and solutions’ features to improve their functions.

کلیدواژه‌ها [English]

  • Organ transplantation
  • Organ preservation solution
  • Liver
  • Kidney
  1. Jing L, Yao L, Zhao M, Peng LP, Liu M. Organ preservation: from the past to the future. Acta Pharmacol Sin 2018; 39(5): 845-57.
  2. Saidi SA, Meurisse N, Jochmans I, Heedfeld V, Wylin T, Parkkinen J, et al. Hepatocellular uptake of cyclodextrin-complexed curcumin during liver preservation: A feasibility study. Biopharm Drug Dispos 2018; 39(1): 18-29.
  3. Alva N, Panisello-Rosello A, Flores M, Rosello-Catafau J, Carbonell T. Ubiquitin-proteasome system and oxidative stress in liver transplantation. World J Gastroenterol 2018; 24(31): 3521-30.
  4. Ali JM, Davies SE, Brais RJ, Randle LV, Klinck JR, Allison ME, et al. Analysis of ischemia/reperfusion injury in time-zero biopsies predicts liver allograft outcomes. Liver Transpl 2015; 21(4): 487-99.
  5. Khedr S, Khedr S, Palygin O, Pavlov TS, Blass G, Levchenko V, Alsheikh A, et al. Increased ENaC activity during kidney preservation in Wisconsin solution. BMC Nephrol 20, 145 (2019).
  6. Tabka D, Bejaoui M, Javellaud J, Achard JM, Ben AH. Angiotensin IV improves subnormothermic machine perfusion preservation of rat liver graft. Biomed Pharmacother 2018; 104: 841-7.
  7. Niknejad H, Deihim T, Peirovi H, Abolghasemi H. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold. Cryobiology 2013; 67(1): 56-63.
  8. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 2008; 15: 88-99.
  9. Yazdanpanah G, Paeini-Vayghan G, Asadi S, Niknejad H. The effects of cryopreservation on angiogenesis modulation activity of human amniotic membrane. Cryobiology 2015; 71(3): 413-8.
  10. Tehrani FA, Ahmadiani A, Niknejad H. The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology 2013; 67(3): 293-8.
  11. Niknejad H, Deihim T, Solati-Hashjin M, Peirovi H. The effects of preservation procedures on amniotic membrane's ability to serve as a substrate for cultivation of endothelial cells. Cryobiology 2011; 63(3): 145-51.
  12. (12) Morris PJ. Transplantation--a medical miracle of the 20th century. N Engl J Med 2004; 351(26): 2678-80.
  13. Watson CJ, Dark JH. Organ transplantation: historical perspective and current practice. Br J Anaesth 2012; 108(Suppl 1): i29-i42.
  14. Goode HF, Webster NR, Howdle PD, Leek JP, Lodge JP, Sadek SA, et al. Reperfusion injury, antioxidants and hemodynamics during orthotopic liver transplantation. Hepatology 1994; 19(2): 354-9.
  15. Olschewski P, Gass P, Ariyakhagorn V, Jasse K, Hunold G, Menzel M, et al. The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers. Cryobiology 2010; 60(3): 337-43.
  16. Ji H, Zhai Y, Kupiec-Weglinski JW. Innate-adaptive immune responses in organ ischemia/reperfusion injury. In: Hartmann G, Wagner H, editors. Innate Immunity: Resistance and Disease-Promoting Principles. Basel, Switzerland: Karger; 2013. p 29-34.
  17. Kaths JM, Cen JY, Chun YM, Echeverri J, Linares I, Ganesh S, et al. Continuous normothermic ex vivo kidney perfusion is superior to brief normothermic perfusion following static cold storage in donation after circulatory death pig kidney transplantation. Am J Transplant 2017; 17(4): 957-69.
  18. Anaya-Prado R, Delgado-Vazquez J. Scientific basis of organ preservation. Curr Opin Organ Transplant 2008; 13(2): 129-34.
  19. Henry SD, Guarrera JV. Protective effects of hypothermic ex vivo perfusion on ischemia/reperfusion injury and transplant outcomes. Transplant Rev (Orlando) 2012; 26(2): 163-75.
  20. Cavaille-Coll M, Bala S, Velidedeoglu E, Hernandez A, Archdeacon P, Gonzalez G, et al. Summary of FDA workshop on ischemia reperfusion injury in kidney transplantation. Am J Transplant 2013; 13(5): 1134-48.
  21. Michel SG, LaMuraglia Ii GM, Madariaga ML, Anderson LM. Innovative cold storage of donor organs using the Paragonix Sherpa Pak devices. Heart Lung Vessel 2015; 7(3): 246-55.
  22. Axelrod DA, Sung RS, Meyer KH, Wolfe RA, Kaufman DB. Systematic evaluation of pancreas allograft quality, outcomes and geographic variation in utilization. Am J Transplant 2010; 10(4): 837-45.
  23. Feng S, Goodrich NP, Bragg-Gresham JL, Dykstra DM, Punch JD, DebRoy MA, et al. Characteristics associated with liver graft failure: The concept of a donor risk index. Am J Transplant 2006; 6(4): 783-90.
  24. Rao PS, Schaubel DE, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, et al. A comprehensive risk quantification score for deceased donor kidneys: The kidney donor risk index. Transplantation 2009; 88(2): 231-6.
  25. Banner NR, Thomas HL, Curnow E, Hussey JC, Rogers CA, Bonser RS. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation 2008; 86(4): 542-7.
  26. Schoening W, Ariyakhagorn V, Schubert T, Olschewski P, Andreou A, Neuhaus P, et al. Warm HTK donor pretreatment reduces liver injury during static cold storage in experimental rat liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14(6): 596-602.
  27. Furukori M, Matsuno N, Meng LT, Shonaka T, Nishikawa Y, Imai K, et al. Subnormothermic machine perfusion preservation with rewarming for donation after cardiac death liver grafts in pigs. Transplant Proc 2016; 48(4): 1239-43.
  28. Hameed AM, Hawthorne WJ, Pleass HC. Advances in organ preservation for transplantation. ANZ J Surg 2017; 87(12): 976-80.
  29. Hagiwara M, Matsuno N, Meng LT, Furukori M, Watanabe K, Shonaka T, et al. Applicability of combined use of extracorporeal support and temperature-controlled machine perfusion preservation for liver procurement of donors after cardiac death in pigs. Transplant Proc 2016; 48(4): 1234-8.
  30. Shigeta T, Matsuno N, Obara H, Mizunuma H, Kanazawa H, Tanaka H, et al. Functional recovery of donation after cardiac death liver graft by continuous machine perfusion preservation in pigs. Transplant Proc 2012; 44(4): 946-7.
  31. Venema LH, Brat A, Moers C, 't Hart NA, Ploeg RJ, Hannaert P, et al. Effects of oxygen during long-term hypothermic machine perfusion in a porcine model of kidney donation after circulatory death. Transplantation 2019; 103(10): 2057-64.
  32. van RR, van Leeuwen OB, Matton APM, Burlage LC, Wiersema-Buist J, van den Heuvel MC, et al. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers. Liver Transpl 2018; 24(5): 655-64.
  33. Kaminski J, Delpech PO, Kaaki-Hosni S, Promeyrat X, Hauet T, Hannaert P. Oxygen consumption by warm ischemia-injured porcine kidneys in hypothermic static and machine preservation. J Surg Res 2019; 242: 78-86.
  34. Manara AR, Murphy PG, O'Callaghan G. Donation after circulatory death. Br J Anaesth 2012; 108 Suppl 1: i108-i121.
  35. Roskott AM, Nieuwenhuijs VB, Dijkstra G, Koudstaal LG, Leuvenink HG, Ploeg RJ. Small bowel preservation for intestinal transplantation: a review. Transpl Int 2011; 24(2): 107-31.
  36. Marasco SF, Bailey M, McGlade D, Snell G, Westall G, Oto T, et al. Effect of donor preservation solution and survival in lung transplantation. J Heart Lung Transplant 2011; 30(4): 414-9.
  37. Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: Current concepts and new strategies for the next decade. Transfus Med Hemother 2011; 38(2): 125-42.
  38. Parsons RF, Guarrera JV. Preservation solutions for static cold storage of abdominal allografts: which is best? Curr Opin Organ Transplant 2014; 19(2): 100-7.
  39. Cameron AM, Barandiaran Cornejo JF. Organ preservation review: history of organ preservation. Curr Opin Organ Transplant 2015; 20(2): 146-51.
  40. Latchana N, Peck JR, Whitson B, Black SM. Preservation solutions for cardiac and pulmonary donor grafts: a review of the current literature. J Thorac Dis 2014; 6(8): 1143-9.
  41. Ikeda M, Bando T, Yamada T, Sato M, Menjyu T, Aoyama A, et al. Clinical application of ET-Kyoto solution for lung transplantation. Surg Today 2015; 45(4): 439-43.
  42. Hiraoka A, Nakajima K, Kuinose M, Totsugawa T, Yoshitaka H. Initial large-dose administration of modified St. Thomas' solution. Asian Cardiovasc Thorac Ann 2013; 22(3): 267-71.
  43. Menezes AQ, Pego-Fernandes PM, Cardoso PF, Braga KA, Nepomuceno NA, Pazetti R, et al. Comparison of Celsior and Perfadex lung preservation solutions in rat lungs subjected to 6 and 12 hours of ischemia using an ex-vivo lung perfusion system. Clinics (Sao Paulo) 2012; 67(11): 1309-14.
  44. Li XL, Zou X, Nie G, Song ML, Li G, Cui W. Role of hydroxyethyl starch in ischemia-reperfusion injury in rat intestinal transplantation. Transplant Proc 2013; 45(6): 2491-6.
  45. Latchana N, Peck JR, Whitson BA, Henry ML, Elkhammas EA, Black SM. Preservation solutions used during abdominal transplantation: Current status and outcomes. World J Transplant 2015; 5(4): 154-64.
  46. Yang C, Xu H, Cai L, Du X, Jiang Y, Zhang Y, et al. Donor pretreatment with adenosine monophosphate-activated protein kinase activator protects cardiac grafts from cold ischaemia/reperfusion injury. Eur J Cardiothorac Surg 2016; 49(5): 1354-60.
  47. Stewart ZA. UW Solution: Still the "Gold Standard" for Liver Transplantation. Am J Transplant 2015; 15(2): 295-6.
  48. Ostrozka-Cieslik A, Dolinska B, Ryszka F. Tips for optimizing organ preservation solutions. Acta Biochimica Polonica 2018; 65(1): 9-15.
  49. Adam R, Delvart V, Karam V, Ducerf C, Navarro F, Letoublon C, et al. Compared efficacy of preservation solutions in liver transplantation: a long-term graft outcome study from the European Liver Transplant Registry. Am J Transplant 2015; 15(2): 395-406.
  50. Igreja MR, Wiederkehr JC, Wiederkehr BA, Maykon MA, de Aguiar WH. Use of Georges Lopez Institute Preservation Solution IGL-1 in Pancreas Transplantation: A Series of 47 Cases. Transplant Proc 2018; 50(3): 702-4.
  51. Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, Garcia-Gil A, Adam R, et al. Emerging concepts in liver graft preservation. World J Gastroenterol 2015; 21(2): 396-407.
  52. Klotz S, Pallavi P, Tsagogiorgas C, Zimmer F, Zollner FG, Binzen U, et al. N-octanoyl dopamine treatment exerts renoprotective properties in acute kidney injury but not in renal allograft recipients. Nephrol Dial Transplant 2016; 31(4): 564-73.
  53. Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, et al. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes. Eur J Pharmacol 2015; 769: 225-33.
  54. Hendriks KDW, Bruggenwirth IMA, Maassen H, Gerding A, Bakker B, Porte RJ, et al. Renal temperature reduction progressively favors mitochondrial ROS production over respiration in hypothermic kidney preservation. J Transl Med 2019; 17(1): 265.
  55. Niknejad H, Yazdanpanah G, Ahmadiani A. Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 2016; 363(3): 599-608.
  56. Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H. Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 2014; 16(1): 33-40.
  57. Yang C, Li L, Xue Y, Zhao Z, Zhao T, Jia Y, et al. Innate immunity activation involved in unprotected porcine auto-transplant kidneys preserved by naked caspase-3 siRNA. J Transl Med 2013; 11: 210.
  58. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ. Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation 2006; 81(4): 623-6.
  59. Liu B, Qian JM. Cytoprotective role of heme oxygenase-1 in liver ischemia reperfusion injury. Int J Clin Exp Med 2015; 8(11): 19867-73.
  60. Nakao A, Toyokawa H, Tsung A, Nalesnik MA, Stolz DB, Kohmoto J, et al. Ex vivo application of carbon monoxide in University of Wisconsin solution to prevent intestinal cold ischemia/reperfusion injury. Am J Transplant 2006; 6(10): 2243-55.
  61. Ikeda A, Ueki S, Nakao A, Tomiyama K, Ross MA, Stolz DB, et al. Liver graft exposure to carbon monoxide during cold storage protects sinusoidal endothelial cells and ameliorates reperfusion injury in rats. Liver Transpl 2009; 15(11): 1458-68.
  62. Caban A, Dolinska B, Budzinski G, Oczkowicz G, Ostrozka-Cieslik A, Cierpka L, et al. The effect of HTK solution modification by addition of thyrotropin and corticotropin on biochemical indices reflecting ischemic damage to porcine kidney. Transplant Proc 2013; 45(5): 1720-2.
  63. Shimosawa T, Matsui H, Xing G, Itakura K, Ando K, Fujita T. Organ-protective effects of adrenomedullin. Hypertens Res 2003; 26(Suppl): S109-S112.
  64. Bral M, Gala-Lopez B, Bigam DL, Freed DH, Shapiro AMJ. Ex situ liver perfusion: Organ preservation into the future. Transplant Rev (Orlando) 2018; 32(3): 132-41.
  65. Kay MD, Hosgood SA, Harper SJ, Bagul A, Waller HL, Rees D, et al. Static normothermic preservation of renal allografts using a novel nonphosphate buffered preservation solution. Transpl Int 2007; 20(1): 88-92.
  66. Ravikumar R, Leuvenink H, Friend PJ. Normothermic liver preservation: A new paradigm? Transpl Int 2015; 28(6): 690-9.
  67. Reddy SP, Brockmann J, Friend PJ. Normothermic perfusion: A mini-review. Transplantation 2009; 87(5): 631-2.
  68. Hosgood S, Nicholson M. Normothermic kidney preservation. Curr Opin Organ Transplan 2011; 16(2): 169-73.
  69. Hughes RD, Mitry RR, Dhawan A. Current status of hepatocyte transplantation. Transplantation 2012; 93(4): 342-7.
  70. Fuller BJ, Petrenko AY, Rodriguez JV, Somov AY, Balaban CL, Guibert EE. Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrification. Cryo Letters 2013; 34(4): 432-52.
  71. Liu W, Hou Y, Chen H, Wei H, Lin W, Li J, et al. Sample preparation method for isolation of single-cell types from mouse liver for proteomic studies. Proteomics 2011; 11(17): 3556-64.
  72. Guan N, Blomsma SA, van Midwoud PM, Fahy GM, Groothuis GM, de Graaf IA. Effects of cryoprotectant addition and washout methods on the viability of precision-cut liver slices. Cryobiology 2012; 65(3): 179-87.
  73. Peirovi H, Rezvani N, Hajinasrollah M, Mohammadi SS, Niknejad H. Implantation of amniotic membrane as a vascular substitute in the external jugular vein of juvenile sheep. J Vasc Surg 2012; 56(4): 1098-104.
  74. Monbaliu D, Liu Q, Libbrecht L, De VR, Vekemans K, Debbaut C, et al. Preserving the morphology and evaluating the quality of liver grafts by hypothermic machine perfusion: a proof-of-concept study using discarded human livers. Liver Transpl 2012; 18(12): 1495-507.
  75. Delsuc C, Faure A, Berthiller J, Dorez D, Matillon X, Meas-Yedid V, et al. Uncontrolled donation after circulatory death: comparison of two kidney preservation protocols on graft outcomes. BMC Nephrol 2018; 19(1): 3.
  76. Di DS, Santori G, Balbis E, Traverso N, Gentile R, Bocca B, et al. Biochemical and morphologic effects after extended liver resection in rats: preliminary results. Transplant Proc 2010; 42(4): 1061-5.
  77. van Smaalen TC, Hoogland ER, van Heurn LW. Machine perfusion viability testing. Curr Opin Organ Transplant 2013; 18(2): 168-73.
  78. Verhoeven CJ, Farid WR, de Jonge J, Metselaar HJ, Kazemier G, van der Laan LJ. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation. J Hepatol 2014; 61(3): 672-84.
  79. Pacheco EG, Silva OD, Sankarankutty AK, Ribeiro MA. Analysis of the liver effluent as a marker of preservation injury and early graft performance. Transplant Proc 2010; 42(2): 435-9.
  80. Genesca M, Ivorra A, Sola A, Palacios L, Goujon JM, Hauet T, et al. Electrical bioimpedance measurement during hypothermic rat kidney preservation for assessing ischemic injury. Biosens Bioelectron 2005; 20(9): 1866-71.
  81. Chazouilleres O, Vaubourdolle M, Robert A, Fourel V, Balladur P, Laribi A, et al. Serum levels of endothelial injury markers creatine kinase-BB and soluble thrombomodulin during human liver transplantation. Liver 1996; 16(4): 237-40.
  82. Noguchi H, Miyagi-Shiohira C, Nakashima Y, Ebi N, Hamada E, Tamaki Y, et al. Modified cell-permeable JNK inhibitors efficiently prevents islet apoptosis and improves the outcome of islet transplantation. Sci Rep 2018; 8(1): 11082.
  83. Minor T, Efferz P, Fox M, Wohlschlaeger J, Luer B. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant 2013; 13(6): 1450-60.
  84. Lynch RJ, Kubus J, Chenault RH, Pelletier SJ, Campbell DA, Englesbe MJ. Comparison of histidine-tryptophan-ketoglutarate and University of Wisconsin preservation in renal transplantation. Am J Transplant 2008; 8(3): 567-73.
  85. Faenza A, Catena F, Nardo B, Montalti R, Capocasale E, Busi N, et al. Kidney preservation with university of Wisconsin and Celsior solution: a prospective multicenter randomized study. Transplantation 2001; 72(7): 1274-7.
  86. Badet L, Petruzzo P, Lefrancois N, McGregor B, Espa M, Berthillot C, et al. Kidney preservation with IGL-1 solution: A preliminary report. Transplant Proc 2005; 37(1): 308-11.
  87. Steffen A, Kiss T, Schmid J, Schubert U, Heinke S, Lehmann S, et al. Production of high-quality islets from goettingen minipigs: Choice of organ preservation solution, donor pool, and optimal cold ischemia time. Xenotransplantation 2017; 24(1).
  88. Noguchi H, Miyagi-Shiohira C, Nakashima Y, Ebi N, Hamada E, Tamaki Y, et al. A Novel Preservation Solution Containing a JNK Inhibitory Peptide Efficiently Improves Islet Yield for Porcine Islet Isolation. Transplantation 2019; 103(2): 344-52.