جایگاه هورمسیس پرتوی در حیطه‌ی رادیولوژی: مقاله مروری

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجو، گروه تکنولوژی پرتوشناسی، کمیته‌ی تحقیقات دانشجویی، دانشکده‌ی پیراپزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 دانشیار، گروه تکنولوژی پرتوشناسی، دانشکده‌ی پیراپزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: بر اساس فرضیه‌ی هورمسیس پرتویی، تابش پرتوی یونیزان با دز کم نه تنها خطرناک نیست، بلکه حتی تعداد سرطان را در جامعه‌ی مورد تابش، به کمتر از حد خودبه‌خودی می‌رساند. هدف از انجام این مطالعه، بررسی جایگاه هورمسیس پرتویی در حیطه‌ی رادیولوژی بودروش‌ها: با استفاده از پایگاه‌های اطلاعاتی PubMed، Proquest، Scopus، Science direct، Google scholar و Web of science، بر اساس کلید واژه‌های Ionizing radiation، Dose response، Hormesis، Low dose radiation، Radiology، Radiation worker و Patient، مطالعات مختلف در بازه‌ی زمانی 2019-1990 جستجو شدند.یافته‌ها: در مراحل اولیه‌ی جستجو، تعداد 1230 مطالعه در پایگاه‌های اطلاعاتی یافت شدند. با بررسی عناوین و خلاصه‌ی مقالات، در نهایت تعداد 38 مقاله‌ی مرتبط با موضوع به دست آمد. با بررسی دقیق چهار حوزه شامل حوزه‌ی ژنتیک با 14 مقاله، حوزه‌ی سلولی با 16 مقاله، حوزه‌ی حیوانی با 2 مقاله و حوزه‌ی انسانی با 6 مقاله طبقه‌بندی شدند.نتیجه‌گیری: اثر هورمسیس پرتویی در برخی از مطالعات رد و در برخی تأیید شده است، اما در شرایط تابشی مشابه با آن چه در حیطه‌ی رادیولوژی برای بیماران و پرتوکاران وجود دارد، به اثبات نرسیده است. برای تأیید و یا عدم تأیید نهایی این مدل پاسخ دز در حیطه‌ی رادیولوژی، لازم است مطالعات دقیقی در شرایط تابش مشابه با آزمون‌های مختلف رادیولوژی از نظر نوع پرتو، انرژی پرتو، دز و آهنگ دز تابشی انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

Radiation Hormesis in the Scope of Radiology: A Review Article

نویسندگان [English]

  • Mahsa Hooshangi 1
  • Ali Chaparian 2
1 Student, Department of Technology of Radiology, Student Research Committee, School of Paramedicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Associate Professor, Department of Technology of Radiology, School of Paramedicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: According to the radiation hormesis hypothesis, low-dose ionizing radiation is not only dangerous, but also can even reduce the number of cancers in the irradiated community. The aim of this study was to evaluate radiation hormesis in the field of radiology.Methods: The search was conducted through Science Direct, Scopus, PubMed, EMBASE, Google Scholar, and Web of science databases using the keywords of Ionizing radiation, Dose response, Hormesis, Low-dose radiation, Radiology, Radiation worker, and Patient in the period of 1990-2019.Findings: In the early stages of the search, 1230 studies were found in databases. Finally, by reviewing the titles and abstracts of the articles, there were 38 articles related to the research topic. After careful consideration, four main areas were categorized including genetics area with 14 articles, cell area with 16 articles, animal area with 2 articles, and human area with 6 articles.Conclusion: The effect of radiation hormesis has been rejected in some studies and confirmed in some others; but has not been demonstrated in radiation conditions similar to those found in radiology for patients and radiation workers. To confirm or disapprove this dose response model, detailed studies should be performed on radiation conditions such as different radiological tests in terms of beam type, beam energy, dose, and radiation dose rate.

کلیدواژه‌ها [English]

  • Radiation
  • Hormesis
  • Radiology
  1. Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41(1-2): 1-322.
  2. Calabrese EJ, Baldwin LA. Radiation hormesis: Its historical foundations as a biological hypothesis. Hum Exp Toxicol 2000; 19(1): 41-75.
  3. Boice JD. The linear nonthreshold (LNT) model as used in radiation protection: An NCRP update. Int J Radiat Biol 2017; 93(10): 1079-92.
  4. International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007; 37(2-4): 1-332.
  5. National Research Council (US). Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: National Academies Press; 2005.
  6. National Council on Radiation Protection and Measurements (NCRP). Evaluation of the Linear-nonthreshold Dose-response Model for Ionizing Radiation. Bethesda, MD: NCRP; 2001.
  7. Doss M. Shifting the paradigm in radiation safety. Dose Response 2012; 10(4): 562-83.
  8. Mishra KP. Carcinogenic risk from low-dose radiation exposure is overestimated. J Radiat Cancer Res 2017; 8: 1-3.
  9. Liu SZ. Cancer control related to stimulation of immunity by low-dose radiation. Dose Response 2006 28; 5(1): 39-47.
  10. Chen D, Wei L. Chromosome aberration, cancer mortality and hormetic phenomena among inhabitants in areas of high background radiation in China. J Radiat Res 1991; 32(Suppl 2): 46-53.
  11. Ghiassi-nejad M, Mortazavi SM, Cameron JR, Niroomand-rad A, Karam PA. Very high background radiation areas of Ramsar, Iran: Preliminary biological studies. Health Phys 2002; 82(1): 87-93.
  12. Tubiana M, Feinendegen LE, Yang C, Kaminski JM. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 2009; 251(1): 13-22.
  13. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 2003; 100(9): 5057-62.
  14. Siegel JA, Welsh JS. Does Imaging Technology Cause Cancer? Debunking the Linear No-Threshold Model of Radiation Carcinogenesis. Technol Cancer Res Treat 2016; 15(2): 249-56.
  15. Lobrich M, Rief N, Kuhne M, Heckmann M, Fleckenstein J, Rube C, et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA 2005; 102(25): 8984-9.
  16. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press; 2006.
  17. Sacks B, Meyerson G, Siegel JA. Epidemiology without biology: False paradigms, unfounded assumptions, and specious statistics in radiation science (With commentaries by Inge Schmitz-Feuerhake and Christopher Busby and a reply by the Authors). Biol Theory 2016; 11: 69-101.
  18. Vilenchik MM, Knudson AG. Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 2003; 100(22): 12871-6.
  19. Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, et al. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci USA 2012; 109(2): 443-8.
  20. Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M, Janiak MK. Single low doses of X rays inhibit the development of experimental tumor metastases and trigger the activities of NK cells in mice. Radiat Res 2004; 161(3): 335-40.
  21. Yang G, Kong Q, Wang G, Jin H, Zhou L, Yu D, et al. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother Radiopharm 2014; 29(10): 428-34.
  22. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013; 24(5): 589-602.
  23. Kojima S. Induction of glutathione and activation of immune functions by low-dose, whole-body irradiation with gamma-rays. Yakugaku Zasshi 2006; 126(10): 849-57. [In Japanese].
  24. Jahns J, Anderegg U, Saalbach A, Rosin B, Patties I, Glasow A, et al. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutat Res 2011; 709-710: 32-9.
  25. Shigematsu A, Adachi Y, Koike-Kiriyama N, Suzuki Y, Iwasaki M, Koike Y, et al. Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J Radiat Res 2007; 48(1): 51-5.
  26. Song KH, Kim MH, Kang SM, Jung SY, Ahn J, Woo HJ, et al. Analysis of immune cell populations and cytokine profiles in murine splenocytes exposed to whole-body low-dose irradiation. Int J Radiat Biol 2015; 91(10): 795-803.
  27. Pandey R, Shankar BS, Sharma D, Sainis KB. Low dose radiation induced immunomodulation: effect on macrophages and CD8+ T cells. Int J Radiat Biol 2005; 81(11): 801-12.
  28. Liu R, Xiong S, Zhang L, Chu Y. Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol 2010; 7(2): 157-62.
  29. Wang B, Li B, Dai Z, Ren S, Bai M, Wang Z, et al. Low-dose splenic radiation inhibits liver tumor development of rats through functional changes in CD4+CD25+Treg cells. Int J Biochem Cell Biol 2014; 55: 98-108.
  30. Weng L, Williams RO, Vieira PL, Screaton G, Feldmann M, Dazzi F. The therapeutic activity of low-dose irradiation on experimental arthritis depends on the induction of endogenous regulatory T cell activity. Ann Rheum Dis 2010; 69(8): 1519-26.
  31. Cho SJ, Kang H, Kim MY, Lee JE, Kim SJ, Nam SY, et al. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation. Int J Radiat Oncol Biol Phys 2016; 94(5): 1207-18.
  32. Rho HS, Park SS, Lee CE. Gamma irradiation up-regulates expression of B cell differentiation molecule CD23 by NF-kappaB activation. J Biochem Mol Biol 2004; 37(4): 507-14.
  33. Rithidech KN, Scott BR. Evidence for radiation hormesis after in vitro exposure of human lymphocytes to low doses of ionizing radiation. Dose Response 2008; 6(3): 252-71.
  34. Ina Y, Sakai K. Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int J Radiat Biol 2005; 81(10): 721-9.
  35. Jiang X, Hong Y, Zhao D, Meng X, Zhao L, Du Y, et al. Low dose radiation prevents doxorubicin-induced cardiotoxicity. Oncotarget 2018; 9(1): 332-45.
  36. Ragab MH, Abbas MO, El-Asady RS, Amer HA, El-Khouly WA, Shabon MH. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System. J Nucl Tech Appl Sci 2015; 3(2): 109-18.
  37. Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O'Hagan JA, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): An international cohort study. Lancet Haematol 2015; 2(7): e276-e281.
  38. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc Natl Acad Sci USA 2003; 100(24): 13761-6.
  39. Ozasa K. Epidemiological research on radiation-induced cancer in atomic bomb survivors. J Radiat Res 2016; 57(Suppl 1): i112-i117.
  40. Sabagh m, Chaparian A. Evaluation of blood parameters of the medical radiation workers. Iran J Med Phys 2019; 16(6): 439-43. [In Persian].
  41. Zakeri F, Hirobe T, Akbari NK. Biological effects of low-dose ionizing radiation exposure on interventional cardiologists. Occup Med (Lond) 2010; 60(6): 464-9.
  42. Chaparian A. Assessment of radiation risk to pediatric patients undergoing conventional X-ray examinations. Radioprotection 2015; 50(1): 19-25.
  43. Chaparian A, Tavakoli I, Karim V. Organ doses, effective dose, and radiation risk assessment in radiography of pediatric paranasal sinuses (Waters view). Asian Biomed 2017; 7(5): 695-8.
  44. Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 2008; 248(1): 254-63.
  45. Chaparian A, Dehghanzade F. Evaluation of radiation-induced cancer risk to patients undergoing intra-oral and panoramic dental radiographies using experimental measurements and Monte Carlo calculations. Int J Radiat Res 2017; 15(2)197-205.
  46. Karimizarchi H, Chaparian A. Estimating risk of exposure induced cancer death in patients undergoing computed tomography pulmonary angiography. Radioprotection 2017; 52(2): 81-6.
  47. Chaparian A, Karimi Zarchi H. Assessment of radiation-induced cancer risk to patients undergoing computed tomography angiography scans. Int J Radiat Res 2018; 16(1): 107-15.
  48. Khan N, Afaq F, Mukhtar H. Apoptosis by dietary factors: The suicide solution for delaying cancer growth. Carcinogenesis 2007; 28(2): 233-9.
  49. Shah DJ, Sachs RK, Wilson DJ. Radiation-induced cancer: A modern view. Br J Radiol 2012; 85(1020): e1166-e1173.
  50. Boice JD. Radiation epidemiology and recent paediatric computed tomography studies. Ann ICRP 2015; 44(1 Suppl): 236-48.
  51. Richardson DB, Cardis E, Daniels RD, Gillies M, O'Hagan JA, Hamra GB, et al. Risk of cancer from occupational exposure to ionising radiation: Retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). BMJ 2015; 351: h5359.
  52. Gyuleva IM, Penkova KI, Rupova IT, Panova DY, Djounova JN. Assessment of some immune parameters in occupationally exposed nuclear power plant workers: Flow cytometry measurements of t lymphocyte subpopulations and immunoglobulin determination. Dose Response 2015; 13(4): 1559325815611901.
  53. Zablotska LB, Bazyka D, Lubin JH, Gudzenko N, Little MP, Hatch M, et al. Radiation and the risk of chronic lymphocytic and other leukemias among chornobyl cleanup workers. Environ Health Perspect 2013; 121(1): 59-65.
  54. Chaparian A, Shoushtarian J, Sadeghi Z, Soosani S, Sabagh m, Askarieh E. Evaluating the justification of computed tomography (CT) scan requests to reduce the risk of radiation-induced cancers. J Isfahan Med Sch 2018; 36(477): 433-8. [In Persian].