اثرات بازوی وازودپرسور در مقابل بازوی وازوپرسور سیستم رنین- آنژیوتانسین بر تنظیم همودینامیک کلیوی در آسیب ایسکمی-ری پرفیوژن کلیه؛ تفاوت جنسیت

نوع مقاله : Review Article

نویسندگان

1 استادیار، گروه فیزیولوژی، دانشکده‌ی علوم پزشکی، دانشگاه علوم پزشکی بهبهان، بهبهان، ایران

2 استادیار، گروه فیزیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران

3 استاد، گروه فیزیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

4 استادیار، گروه انگل‌شناسی، دانشکده‌ی پیراپزشکی، دانشگاه علوم پزشکی ایلام، ایلام، ایران

5 استادیار، گروه فیزیولوژی، دانشکده‌ی پزشکی، مرکز تحقیقات بیماری‌های غیرواگیر، دانشگاه علوم پزشکی ایلام، ایلام، ایران

چکیده

مقاله مروری




مکانیسم‌های دقیق دخیل در آسیب حاد کلیوی (Acute kidney injury) AKI ناشی از ایسکمی- ری پرفیوژن کلیوی (Ischemia-reperfusion ) IR به طور کامل شناحته نشده است. با این وجود، مشخص شده که سیستم رنین- آنژیوتانسین (Renin-angiotensin system ) RAS، می‌تواند نقش مهمی در AKI مرتبط با IR ایفا نماید. RAS به عنوان یکی از مهم‌ترین سیستم‌های وازواکتیو اندوکرین، پاراکرین و اینتراکرین در نظر گرفته می‌‌شود که در تنظیم فیزیولوژیکی عملکردهای قلبی- عروقی، فشارخون، تعادل مایع و الکترولیت‌ها حائز اهمیت است. این سیستم، مجموعه‌ای از اثرات سودمند و یا ناسازگار عروقی و کلیوی را اعمال می‌کند. دو بازوی اصلی RAS شامل آنزیم مبدل آنژیوتانسین ((ACE، آنژیوتانسین II، رسپتور AT1 (بازوی وازوکانستریکتور) و ACE2، آنژیوتانسین 7-1، رسپتور AT2 و رسپتور Mas (بازوی وازودیلاتور) می‌باشند. ایسکمی- ری پرفیوژن و برون‌دادهای آن وابسته به جنس گزارش شده است، از طرفی عملکرد RAS سیستمیک و موضعی در تنظیم همودینامیک کلیوی نیز می‌تواند تحت تأثیر جنسیت قرار گیرد. در واقع جنسیت و هورمون‌های جنسی، حساسیت به آنژیوتانسین II و آنژیوتانسین 7-1 را تحت تأثیر قرار می‌دهند. این مقاله‌ی مروری به بررسی نقش رسپتورهای بازوی وازودپرسور جدید در مقابل بازوی وازوپرسور کلاسیک RAS و تداخل عملکرد آن‌ها و همچنین تفاوت‌های جنسی در فعالیت این سیستم و اثر آن‌ها بر جریان خون کلیوی در آسیب ایسکمی- ری پرفیوژن کلیه پرداخته است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Vasodepressor vs. Vasopressor Arms of Renin Angiotensin System on Renal Hemodynamic Regulation in Renal Ischemia-Reperfusion Injury; Sex Difference

نویسندگان [English]

  • Farzaneh Karimi 1
  • Tahereh Safari 2
  • Mehdi Nematbakhsh 3
  • Nahid Maspi 4
  • Maryam Maleki 5
1 Assistant Professor, Department of Physiology, School of Medical Sciences, Behbahan University of Medical Sciences, Behbahan, Iran
2 Assistant Professor, Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
3 Professor, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
4 Assistant Professor, Department of Parasitology, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
5 Assistant Professor, Department of Physiology, Faculty of Medicine, Non-Communicable Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
چکیده [English]

The exact mechanisms involved in acute renal injury (AKI) due to renal ischemia-reperfusion (IR) are not fully understood, although it has been shown that the renin-angiotensin system (RAS) may play an important role in IR-associated AKI. RAS is considered as one of the most important vasoactive systems of endocrine, paracrine and intracrine, which is important in the physiological regulation of cardiovascular function, blood pressure, fluid and electrolytes balance. This system exerts a set of beneficial or adverse vascular and renal effects. The two main arms of RAS include "ACE, angiotensin II, AT1 receptor" (vasoconstrictor arm) and "ACE2, angiotensin 1-7, AT2 receptor and Mas receptor" (vasodilator arm). IR and its outputs have been reported to be sex-dependent. On the other hand, systemic and local RAS function in the regulation of renal hemodynamics can also be affected by gender. In fact, sex and sex hormones affect sensitivity to angiotensin II and angiotensin 1-7. This review article examines the role of RAS receptors of the new vasopressor arm versus the classic vasopressor arm and their function interference, as well as sex differences and it's influence on renal blood flow in renal IR Injury.

کلیدواژه‌ها [English]

  • Renin-Angiotensin System
  • Ischemia
  • Reperfusion injury
  • Sex Characteristics
  • Renal Circulation
  • Receptors
  • Angiotensin
  1. Le Clef N, Verhulst A, D’Haese PC, Vervaet BA. Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice. PloS One 2016; 11(3): e0152153.
  2. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury. Nat Rev
    Dis Primers 2021; 7(1): 52.
  3. Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol 2015; 309(10): F821-34.
  4. Lima NK, Farias WRA, Cirilo MAS, Oliveira AG, Farias JS, Aires RS, et al. Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na+ transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase. Life Sci 2021; 266: 118879.
  5. Sharma N, Anders HJ, Gaikwad AB. Fiend and friend in the renin angiotensin system: an insight on acute kidney injury. Biomed Pharmacother 2019; 110: 764-74.
  6. Hasanein P, Rahdar A, Barani M, Baino F, Yari S. Oil-in-water microemulsion encapsulation of antagonist drugs prevents renal ischemia-reperfusion injury in rats. Appl Sci 2021; 11(3): 1264.
  7. Andreucci M, Faga T, Pisani A, Perticone M, Michael A. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med 2017; 39: 1-8.
  8. Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2014; 14(1): 3-14.
  9. Wang H, Zheng Z, Zhang N, Zhou Y, Jin S. Regular transient limb ischemia protects endothelial function against hypercholesterolemic damage in rabbits. Sci Prog 2021; 104(3): 00368504211036858.
  10. Jankauskas SS, Andrianova NV, Alieva IB, Prusov AN, Matsievsky DD, Zorova LD, et al. Dysfunction of kidney endothelium after ischemia/reperfusion and its prevention by mitochondria-targeted antioxidant. Biochemistry (Mosc) 2016; 81(12): 1538-48.
  11. Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2021 ;199: 101919.
  12. Callera G, Tostes R, Savoia C, Muscara M, Touyz RM. Vasoactive peptides in cardiovascular (patho) physiology. Expert Rev Cardiovasc Ther 2007; 5(3): 531-52.
  13. Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 2004; 15(5): 1277-88.
  14. Chalian M, Xia J, Gholamrezanezhad A, Hong K, Mathews W, Szabo Z. Angiotensin II subtype 1 receptor imaging in renal ischemia reperfusion.
    J Nucl Med 2011; 52(Suppl 1): 346.
  15. Corriere MA, Edwards MS. Revascularization for atherosclerotic renal artery stenosis: the treatment of choice? J Cardiovasc Surg (Torino) 2008; 49(5):
    591-608.
  16. Efrati S, Berman S, Hamad RA, Siman-Tov Y, Ilgiyaev E, Maslyakov I, et al. Effect of captopril treatment on recuperation from ischemia/reperfusion-induced acute renal injury. Nephrol Dial Transplant 2012; 27(1): 136-45.
  17. Maleki M, Samadi M, Khanmoradi M, Nematbakhsh M, Talebi A, Nasri H. The role of S-methylisothiourea hemisulfate as inducible nitric oxide synthase inhibitor against kidney iron deposition in iron overload rats. Adv Biomed Res 2016; 5: 96.
  18. Xiong W, He FF, You RY, Xiong J, Wang YM, Zhang C, et al. Acupuncture application in chronic kidney disease and its potential mechanisms. Am J
    Chin Med 2018; 46(6): 1169-85.
  19. Wierema TK, Houben AJ, Kroon AA, Koster D, VAN Der Zander K, VAN Englshoven JM, et al. Nitric oxide dependence of renal blood flow in patients with renal artery stenosis. J Am Soc Nephrol 2001; 12(9): 1836-43.
  20. Maleki M, Hasanshahi J, Moslemi F. The role of vasodilator receptors of renin–angiotensin system on nitric oxide formation and kidney circulation after angiotensin ii infusion in renal ischemia/reperfusion rats. Adv Biomed Res 2018; 7: 25.
  21. Covic A, Gusbeth-Tatomir P. The role of the renin-angiotensin-aldosterone system in renal artery stenosis, renovascular hypertension, and ischemic nephropathy: diagnostic implications. Prog Cardiovasc Dis 2009; 52(3): 204-8.
  22. Heyman SN, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol 2008; 3(1): 288-96.
  23. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006; 17(1): 17-25.
  24. Navar LG, Harrison-Bernard LM, Imig JD, Cervenka L, Mitchell KD. Renal responses to AT1 receptor blockade. Am J Hypertens 2000; 13(1 pt 2): 45S-54S.
  25. Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529: 111259.
  26. Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2021; 8(2):108-59.
  27. Spasov A, Yakovlev D, Brigadirova A. Angiotensin AT1 receptors and their ligands. Pharm Chem J 2017; 51(1): 1-8.
  28. Allred AJ, Chappell MC, Ferrario CM, Diz DI. Differential actions of renal ischemic injury on the intrarenal angiotensin system. Am J Physiol Renal Physiol 2000; 279(4): F636-45.
  29. Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A 2011; 108(36): 14849-54.
  30. Ortíz MC, Fortepiani LA, Ruiz-Marcos FM, Atucha NM, García-Estañ J. Role of AT1 receptors in the renal papillary effects of acute and chronic nitric oxide inhibition. Am J Physiol 1998; 274(3): R760-6.
  31. Dautzenberg M, Keilhoff G, Just A. Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS. J Physiol 2011; 589(Pt 19): 4731-44.
  32. Burke M, R Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Current vascular pharmacology. 2014;12(6):845-58.
  33. Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension 1999; 33(1): 102-7.
  34. Matavelli LC, Siragy HM. AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol 2015; 65(3): 226-32.
  35. Fang C, Stavrou E, Schmaier AA, Grobe N, Morris M, Chen A, et al. Angiotensin 1-7 and Mas decrease thrombosis in Bdkrb2-/- mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation. Blood 2013; 121(15): 3023-32.
  36. van Kats JP, de Lannoy LM, Danser AJ, van Meegen JR, Verdouw PD, Schalekamp MA. Angiotensin II Type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo. Hypertension 1997; 30(1 Pt 1): 42-9.
  37. Navar LG. Counterpoint: Activation of the intrarenal renin-angiotensin system is the dominant contributor to systemic hypertension. J Appl Physiol (1985) 2010; 109(6): 1998-2000.
  38. Weight SC, Furness PN, Bell PF, Nicholson ML. A new model of renal warm ischaemia reperfusion injury. Transplant Proc 1997; 29(7): 3002-3.
  39. Pinheiro SVB, Simões e Silva AC. Angiotensin converting enzyme 2, Angiotensin-(1-7), and receptor MAS axis in the kidney. Int J Hypertens 2012; 2012: 414128.
  40. Bussard RL, Busse LW. Angiotensin II: a new therapeutic option for vasodilatory shock. Ther Clin Risk Manag 2018; 14: 1287-98.
  41. Su Z, Zimpelmann J, Burns K. Angiotensin-(1-7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int 2006; 69(12): 2212-8.
  42. Chappell MC, Modrall JG, Diz DI, Ferrario CM. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib Nephrol 2004; 143: 77-89.
  43. Zimpelmann J, Burns KD. Angiotensin-(1-7) activates growth-stimulatory pathways in human mesangial cells. Am J Physiol Renal Physiol 2009; 296(2): F337-46.
  44. Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension 2002; 39(3): 799-802.
  45. Gwathmey TM, Alzayadneh EM, Pendergrass KD, Chappell MC. Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am J Physiol Regul Integr Comp Physiol 2012; 302(5): R518-30.
  46. Barroso LC, Silveira KD, Lima CX, Borges V, Bader M, Rachid M, et al. Renoprotective effects of AVE0991, a nonpeptide Mas receptor agonist, in experimental acute renal injury. Int J Hypertens 2012; 2012: 808726.
  47. Pinheiro SV, Ferreira AJ, Kitten GT, Da Silveira KD, Da Silva DA, Santos SH, et al. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 2009; 75(11): 1184-93.
  48. da Silveira KD, Pompermayer Bosco KS, Diniz LR, Carmona AK, Cassali GD, Bruna-Romero O, et al. ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci (Lond)
    2010; 119(9): 385-94.
  49. Zhang F, Tang H, Sun S, Luo Y, Ren X, Chen A, et al. Angiotensin-(1-7) induced vascular relaxation in spontaneously hypertensive rats. Nitric Oxide 2019; 88: 1-9.
  50. Navar LG, Kobori H, Prieto-Carrasquero M. Intrarenal angiotensin II and hypertension. Curr Hypertens Rep 2003; 5(2): 135-43.
  51. Kostenis E, Milligan G, Christopoulos A, Sanchez-Ferrer CF, Heringer-Walther S, Sexton PM, et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 2005; 111(14): 1806-13.
  52. Povlsen AL, Grimm D, Wehland M, Infanger M, Krüger M. The vasoactive Mas receptor in essential hypertension. J Clin Med 2020; 9(1): 267.
  53. Sasaki S, Higashi Y, Nakagawa K, Matsuura H, Kajiyama G, Oshima T. Effects of angiotensin-(1-7) on forearm circulation in normotensive subjects and patients with essential hypertension. Hypertension 2001; 38(1): 90-4.
  54. Sampaio WO, Nascimento AAS, Santos RAS. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol 2003; 284(6): H1985-94.
  55. Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 1997; 29(1): 394-8.
  56. Heitsch H, Brovkovych S, Malinski T, Wiemer G. Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension 2001; 37(1): 72-6.
  57. Giandalia A, Giuffrida AE, Gembillo G, Cucinotta D, Squadrito G, Santoro D, et al. Gender differences in diabetic kidney disease: focus on hormonal, genetic and clinical factors. Int J Mol Sci 2021; 22(11): 5808.
  58. Haley DP, Bulger RE. The aging male rat: structure and function of the kidney. Am J Anat 1983; 167(1): 1-13.
  59. Blantz RC, Peterson OW, Blantz ER, Wilson CB. Sexual differences in glomerular ultrafiltration: effect of androgen administration in ovariectomized rats. Endocrinology 1988; 122(3): 767-73.
  60. Hutchens MP, Dunlap J, Hurn PD, Jarnberg PO. Renal ischemia: does sex matter? Anesth Analg 2008; 107(1): 239-49.
  61. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 2004; 279(50): 52282-92.
  62. Takaoka M, Yuba M, Fujii T, Ohkita M, Matsumura Y. Oestrogen protects against ischaemic acute renal failure in rats by suppressing renal endothelin-1 overproduction. Clin Sci (Lond) 2002; 103(Suppl 48): 434S-7.
  63. Hutchens MP, Fujiyoshi T, Komers R, Herson PS, Anderson S. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo. Am J Physiol Renal Physiol 2012; 303(3): F377-85.
  64. Neugarten J, Acharya A, Silbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 2000; 11(2): 319-29.
  65. Metcalfe PD, Meldrum KK. Sex differences and the role of sex steroids in renal injury. J Urol 2006; 176(1): 15-21.
  66. Davidoff M, Caffier H, Schiebler TH. Steroid hormone binding receptors in the rat kidney. Histochemistry 1980; 69(1): 39-48.
  67. Chatauret N, Badet L, Barrou B, Hauet T. Ischemia-reperfusion: From cell biology to acute kidney injury. Prog Urol 2014; 24(Suppl 1): S4-12.
  68. Miller JA, Cherney DZ, Duncan JA, Lai V, Burns KD, Kennedy CR, et al. Gender differences in the renal response to renin-angiotensin system blockade. J Am Soc Nephrol 2006; 17(9): 2554-60.
  69. Owonikoko TK, Fabucci ME, Brown PR, Nisar N, Hilton J, Mathews WB, et al. In vivo investigation of estrogen regulation of adrenal and renal angiotensin (AT1) receptor expression by PET. J Nucl Med 2004; 45(1): 94-100.
  70. Armando I, Jezova M, Juorio AV, Terrón JA, Falcón-Neri A, Semino-Mora C, et al. Estrogen upregulates renal angiotensin II AT(2) receptors. Am J Physiol Renal Physiol 2002; 283(5): F934-43.
  71. Macova M, Armando I, Zhou J, Baiardi G, Tyurmin D, Larrayoz-Roldan IM, et al. Estrogen reduces aldosterone, upregulates adrenal angiotensin II AT2 receptors and normalizes adrenomedullary Fra-2 in ovariectomized rats. Neuroendocrinology 2008; 88(4): 276-86.
  72. Silbiger SR, Neugarten J. The impact of gender on the progression of chronic renal disease. Am J Kidney Dis 1995; 25(4): 515-33.
  73. Sullivan JC. Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol 2008; 294(4): R1220-6.
  74. Bissell DM, Roulot D, George J. Transforming growth factor β and the liver. Hepatology 2001; 34(5): 859-67.
  75. Böttinger EP, Bitzer M. TGF-ß signaling in renal disease. JASN 2002; 13(10): 2600-10.
  76. Sampson AK, Moritz KM, Denton KM. Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gend Med 2012; 9(1): 21-32.
  77. Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM. Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul Pept 2005; 124(1-3): 7-17.
  78. Ciuffo G, Viswanathan M, Seltzer AM, Tsutsumi K, Saavedra JM. Glomerular angiotensin II receptor subtypes during development of rat kidney. Am J Physiol 1993; 265(2): F264-71.
  79. McInnes GT. Angiotensin II antagonism in clinical practice: experience with valsartan. J Cardiovasc
    Pharmacol 1999; 33(Suppl 1): S29-32.
  80. De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52(3): 415-72.
  81. Bosnyak S, Welungoda IK, Hallberg A, Alterman M, Widdop RE, Jones ES. Stimulation of angiotensin AT2 receptors by the non‐peptide agonist, Compound 21, evokes vasodepressor effects in conscious spontaneously hypertensive rats. Br J Pharmacol 2010; 159(3): 709-16.
  82. Li XC, Widdop RE. AT2 receptor‐mediated vasodilatation is unmasked by AT1 receptor blockade in conscious SHR. Br J Pharmacol 2004; 142(5): 821-30.
  83. Hilliard LM, Nematbakhsh M, Kett MM, Teichman E, Sampson AK, Widdop RE, et al. Gender differences in pressure-natriuresis and renal autoregulation: role of the angiotensin type 2 receptor. Hypertension 2011; 57(2): 275-82.
  84. Carey RM, Howell NL, Jin XH, Siragy HM. Angiotensin type 2 receptor-mediated hypotension in angiotensin type-1 receptor-blocked rats. Hypertension 2001; 38(6): 1272-7.
  85. Rogers JL, Mitchell AR, Maric C, Sandberg K, Myers A, Mulroney SE. Effect of sex hormones on renal estrogen and angiotensin type 1 receptors in female and male rats. Am J Physiol Regul Integr Comp Physiol 2007; 292(2): R794-9.
  86. Maleki M, Nematbakhsh M. Gender difference in renal blood flow response to angiotensin II administration after ischemia/reperfusion in rats: the role of AT2 receptor. Adv Pharmacol Sci 2016; 2016: 7294942.
  87. Sampson AK, Hilliard LM, Moritz KM, Thomas MC, Tikellis C, Widdop RE, et al. The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent. Am J Physiol Regul Integr Comp Physiol 2012; 302(1): R159-65.
  88. Pessôa BS, Slump DE, Ibrahimi K, Grefhorst A, van Veghel R, Garrelds IM, et al. Angiotensin II type 2 receptor-and acetylcholine-mediated relaxation: the essential contribution of female sex hormones and chromosomes. Hypertension 2015; 66(2): 396-402.
  89. Marrelli SP. Altered endothelial ca2+ regulation after ischemia/reperfusion produces potentiated endothelium-derived hyperpolarizing factor-mediated dilations. Stroke 2002; 33(9): 2285-91.
  90. Maleki M, Nematbakhsh M. Mas receptor antagonist (A799) alters the renal hemodynamics responses to angiotensin II administration after renal moderate ischemia/reperfusion in rats: gender related differences. Res Pharm Sci 2019; 14(1): 12-9.
  91. Karimi F, Nematbakhsh M. Mas receptor blockade promotes renal vascular response to ang II after partial kidney ischemia/reperfusion in a two-kidney-one-clip hypertensive rats model. Int J Nephrol 2021: 6618061.