پپتیدهای زیست‌الهام، نسل جدیدی از حامل‌های انتقال ژن

نوع مقاله : Review Article

نویسندگان

1 دستیار پژوهشی، گروه نانوبیوتکنولوژی، دانشکده‌ی علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 دانشیار، گروه نانوبیوتکنولوژی، دانشکده‌ی علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

مقاله مروری




ژن‌درمانی، نگرش نوینی است که با رویکرد تصحیح مواد ژنتیکی ناقص یا بیان درون یاخته‌ای پروتئین‌های درمانی صورت می‌پذیرد و این مهم در گروی به‌کارگیری سیستم‌های انتقال ژن کارآ با بازدهی بالاست. با وجود پیشرفت‌های نسبی که در انتقال ژن به کمک حامل‌های ویروسی به دست آمده است اما همچنان این روش‌ها با سد‌ها و محدودیت‌هایی ازجمله ایمنی‌زایی، سمیت و ظرفیت پایین حمل ماده‌ی ژنتیکی مواجه‌اند که نیازمند تحقیقات بیشتر به ‌منظور مرتفع نمودن آن‌هاست. روش جایگزینی که بدین منظور مورد استفاده قرار می‌گیرد، بهره‌مندی از سامانه‌ها و حامل‌های غیرویروسی است. لیپیدها، پلیمرها، پروتئین و پپتیدهای کاتیونی ازجمله پرکاربرد‌ترین ناقل‌های غیرویروسی هستند که با وجود کارآیی کمتر در فرایند انتقال مواد ژنی، به دلیل سمیت پایین‌تر، بسیار مورد توجه قرار گرفته‌اند. نانوحامل‌های جدید می‌بایست دارای توانایی انتقال ماده‌ی اسیدنوکلئیکی و محافظت از آن در برابر آندونوکلئاز‌ها، غلبه بر سدهای بیولوژیکی و رهایش ژن بوده و علاوه بر آن فاقد سمیت و قدرت تحریک سیستم ایمنی باشند. از جمله‌ی حامل‌های نسل جدید نانوپپتیدهای کایمریک با توانایی فشرده‌سازی مولکول اسید نوکلئیک، بهبود فرار آندوزومی آن به داخل سیتوپلاسم و کمک به ترابرد آن از سیتوزول به هسته است. در این مطالعه سعی گردیده است، مروری بر حامل‌های پپتیدی حمل‌کننده‌ی مواد ژنتیکی با تمرکز بر انواع کانژوگه‌ شده با نانوذرات صورت پذیرد؛ چراکه بدین نحو استفاده از ویژگی‌های تشخیصی و درمانی نانوذرات در کنار بهره‌مندی از پتانسیل‌های پپتید‌های حمل‌کننده‌ی مواد ژنی امکان‌پذیر خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Biomimetic Peptides: A New Generation of Gene Transfer Vectors

نویسندگان [English]

  • Hooman Mahmoudi Aznaveh 1
  • Maryam Nikkhah 2
1 Research Assistant, Department of Nanobiotechnology, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
2 Associate Professor, Department of Nanobiotechnology, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Gene therapy is a new approach that aims to modify defective genes or intracellular expression of therapeutic proteins, and this depends on the use of high-efficiency gene transfer systems. Although there have been relative successes in gene transfer through viral carriers, these methods still face limitations such as low genetic material carrying capacity, immunogenicity, and toxicity that require further research to address. An alternative method used for this purpose is to use non-viral systems and vectors. Lipids, polymers, proteins, and cationic peptides are among the most well-known non-viral systems that have received much attention due to their lower toxicity despite their lower transfection efficiency. New nano-vectors must carry the gene and protect it against degradation, overcome biological barriers, high transfection efficiencies, and gene release, and not induce toxicity and stimulate the immune system. Vectors of the new generation of chimeric nano-peptides can compress the nucleic acid molecule, accelerate the endosomal escape of the gene transferred into the cytosol, and help transport it from the cytosol to the nucleus. In this study, we review the peptide vectors that carry genetic material, focusing on the types conjugated to nanoparticles; because in this way, it will be possible to use the diagnostic and therapeutic properties of nanoparticles and take advantage of the gene-carrying peptides.

کلیدواژه‌ها [English]

  • Genetic therapy
  • Gene transfer techniques
  • Cell-penetrating Peptides
  • Nanoparticles
  • Biomimetics
  • Genetic vectors
  1. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323(9): 570-8.
  2. Colella P, Mingozzi F. Gene therapy for pompe disease: The time is now. Hum Gene Ther 2019; 30(10): 1245-62.
  3. Würtele H, Little KCE, Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther 2003; 10(21): 1791-9.
  4. Friedmann T, Roblin R. Gene therapy for human genetic disease? Science 1972; 175(4025): 949-55.
  5. Laemmli UK. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci U S A 1975; 72(11): 4288-92.
  6. Mintzer MA, Simanek EE. Nonviral vectors for gene
    Chem Rev 2009; 109(2): 259-302.
  7. Moasses Ghafary S, Nikkhah M, Hatamie S, Hosseinkhani S. Design and preparation of photoluminescent nanoparticles based on chimeric peptides-graphene quantum dots for nuclear drug delivery and tracking [in Persian]. J Biotechnol 2019; 10(1): 45-51.
  8. Santana-Armas ML, de Ilarduya CT. Strategies for cancer gene-delivery improvement by non-viral vectors. Int J Pharm 2021; 596: 120291.
  9. Hanzlíková M, Ruponen M, Galli E, Raasmaja A, Aseyev V, Tenhu H, et al. Mechanisms of polyethylenimine-mediated DNA delivery: free carrier helps to overcome the barrier of cell-surface glycosaminoglycans. J Gene Med 2011; 13(7-8): 402-9.
  10. Liu J, Dean DA. Gene therapy for acute respiratory distress syndrome. Front Physiol 2022; 12: 786255.
  11. Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am 2017; 31(5): 753-70.
  12. Sun W, Shi Q, Zhang H, Yang K, Ke Y, Wang Y, et al. Advances in the techniques and methodologies of cancer gene therapy. Discov Med 2019; 27(146): 45-55.
  13. Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) 2017; 15(3): 369-75.
  14. Yan C, Quan XJ, Feng YM. Nanomedicine for gene delivery for the treatment of cardiovascular diseases. Curr Gene Ther 2019; 19(1): 20-30.
  15. Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng 2019; 13: 7.
  16. Bellanti JA. Genetics/epigenetics/allergy: The gun is loaded … but what pulls the trigger? Allergy Asthma Proc 2019; 40(2): 76-83.
  17. Molas M, Gómez-Valadés AG, Vidal-Alabró A, Miguel-Turu M, Bermudez J, Bartrons R, et al. Receptor-mediated gene transfer vectors: progress towards genetic pharmaceuticals. Curr Gene Ther 2003; 3(5): 468-85.
  18. Worch R. Structural biology of the influenza virus fusion peptide. Acta Biochim Pol 2014; 61(3): 421-6.
  19. Pagant S, Liberatore RA. In vivo electroporation of plasmid DNA: A promising srategy for rapid, inexpensive, and flexible delivery of anti-viral monoclonal antibodies. Pharmaceutics 2021; 13(11): 1882.
  20. Sitta J, Howard CM. Applications of ultrasound-mediated drug delivery and gene therapy. Int J Mol Sci 2021; 22(21): 11491.
  21. Pagano JS, Vaheri A. Enhancement of infectivity of poliovirus RNA with diethylaminoethyl-dextran (DEAE-D). Arch Gesamte Virusforsch 1965; 17(3): 456-64.
  22. Leopold PL, Crystal RG. Intracellular trafficking of adenovirus: many means to many ends. Adv Drug Deliv Rev 2007; 59(8): 810-21.
  23. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4(5): 346-58.
  24. Sadeghian F, Hosseinkhani S, Alizadeh A, Hatefi A. Design, engineering and preparation of a multi-domain fusion vector for gene delivery. Int J Pharm 2012; 427(2): 393-9.
  25. Wang Y, Mangipudi SS, Canine BF, Hatefi A. A designer biomimetic vector with a chimeric architecture for targeted gene transfer. Journal of controlled release. J Control Release 2009; 137(1): 46-53.
  26. Nikyar A, Bolhassani A, Rouhollah F, Heshmati M. In vitro delivery of HIV-1 Nef-Vpr DNA construct using the human antimicrobial peptide LL-37. Curr Drug Deliv 2022.
  27. Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 2019; 41(11): 1283-98.
  28. Tu Y, Kim J. A fusogenic segment of glycoprotein H from herpes simplex virus enhances transfection efficiency of cationic liposomes. J Gene Med 2008; 10(6): 646-54.
  29. Moore NM, Sheppard CL, Barbour TR, Sakiyama-Elbert SE. The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles. J Gene Med 2008; 10(10): 1134-49.
  30. Fominaya J, Uherek C, Wels W. A chimeric fusion protein containing transforming growth factor-alpha mediates gene transfer via binding to the EGF receptor. Gene Ther 1998; 5(4): 521-30.
  31. Paul RW, Weisser KE, Loomis A, Sloane DL, LaFoe D, Atkinson EM, et al. Gene transfer using a novel fusion protein, GAL4/invasin. Hum Gene Ther 1997; 8(10): 1253-62.
  32. Balicki D, Putnam CD, Scaria PV, Beutler E. Structure and function correlation in histone H2A peptide-mediated gene transfer. Proc Natl Acad Sci U S A 2002; 99(11): 7467-71.
  33. Canine BF, Wang Y, Hatefi A. Evaluation of the effect of vector architecture on DNA condensation and gene transfer efficiency. J Control Release 2008; 129(2): 117-23.
  34. Canine BF, Wang Y, Hatefi A. Biosynthesis and characterization of a novel genetically engineered polymer for targeted gene transfer to cancer cells.
    J Control Release 2009; 138(3): 188-96.
  35. Loughran SP, McCrudden CM, McCarthy HO. Designer peptide delivery systems for gene therapy. Eur J Nanomed 2015; 7(2): 85-96.
  36. Puebla I, Esseghir S, Mortlock A, Brown A, Crisanti A, Low W. A recombinant H1 histone-based system for efficient delivery of nucleic acids. J Biotechnol 2003; 105(3): 215-26.
  37. Kaouass M, Beaulieu R, Balicki D. Histonefection: Novel and potent non-viral gene delivery. J Control Release 2006; 113(3): 245-54.
  38. Puebla I, Esseghir S, Mortlock A, Brown A, Low W. A recombinant H1 histone-based system for efficient delivery of nucleic acids. J Biotechnol 2003; 105(3): 215-26.
  39. Fritz JD, Herweijer H, Zhang G, Wolff JA. Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum Gene Ther 1996; 7(12): 1395-404.
  40. McCarthy HO, Wang Y, Mangipudi SS, Hatefi A. Advances with the use of bio-inspired vectors towards creation of artificial viruses. Expert Opin Drug Deliv 2010; 7(4): 497-512.
  41. Bharath MM, Ramesh S, Chandra NR, Rao MRS. Identification of a 34 amino acid stretch within the
    C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry 2002; 41(24): 7617-27.
  42. Li W, Nicol F, Szoka Jr FC. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev 2004; 56(7): 967-85.
  43. Miura N, Tange K, Nakai Y, Yoshioka H, Harashima H, Akita H. Identification and evaluation of the minimum unit of a KALA peptide required for gene delivery and immune activation. J Pharm Sci 2017; 106(10): 3113-9.
  44. Alipour M, Hosseinkhani S, Sheikhnejad R, Cheraghi R. Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Sci Rep 2017; 7: 41507.
  45. Cheraghi R, Nazari M, Alipour M, Majidi A, Hosseinkhani S. Development of a targeted anti-HER2 scFv chimeric peptide for gene delivery into HER2-positive breast cancer cells. Int J Pharm 2016; 515(1-2): 632-43.
  46. Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-based and polypeptide-based gene delivery systems. Top Curr Chem (Cham) 2017; 375(2): 32.
  47. Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2017; 18(2): 73-89.
  48. Hampoelz B, Andres-Pons A, Kastritis P, Beck M. Structure and assembly of the nuclear pore complex. Annu Rev Biophys 2019; 48: 515-36.
  49. Lu J, Wu T, Zhang B, Liu S, Song W, Qiao J, et al. Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal 2021; 19(1): 60.
  50. Mohebbi S, Tohidi Moghadam T, Nikkhah M, Behmanesh M. RGD-HK peptide-functionalized gold nanorods emerge as targeted biocompatible nanocarriers for biomedical applications. Nanoscale Res Lett 2019; 14(1): 13.
  51. Lee TY, Lin Ct, Kuo SY, Chang DK, Wu HC. Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 2007; 67(22): 10958-65.
  52. Lanford Re, Kanda P, Kennedy RC. Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 1986; 46(4): 575-82.
  53. Elder RM, Jayaraman A. Molecular simulations of polycation-DNA binding exploring the effect of peptide chemistry and sequence in nuclear localization sequence based polycations. J Phys Chem B 2013; 117(40): 11988-99.
  54. Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol 1988; 8(10): 4048-54.
  55. Robbins J, Dilworth SM, Laskey RA, Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 1991; 64(3): 615-23.
  56. Schreiber V, Molinete M, Boeuf H, de Murcia G, Ménissier-de Murcia J. The human poly(ADP-ribose) polymerase nuclear localization signal is a bipartite element functionally separate from DNA binding and catalytic EMBO J 1992; 11(9): 3263-9.
  57. Subramanian A, Ranganathan P, Diamond SL. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 1999; 17(9): 873-7.
  58. Kleinschmidt JA, Seiter A. Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus laevis. EMBO J 1988; 7(6): 1605-14.
  59. Forwood JK, Harley V, Jans DA. The C-terminal nuclear localization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem 2001; 276(49): 46575-82.
  60. Lange A, Mills Re, Devine SE, Corbett AH. A PY-NLS nuclear targeting signal is required for nuclear localization and function of the Saccharomyces cerevisiae mRNA-binding protein Hrp1. J Biol Chem 2008; 283(19): 12926-34.
  61. Ben-Efraim I, Zhou Q, Wiedmer T, Gerace L, Sims PJ. Phospholipid scramblase 1 is imported into the nucleus by a receptor-mediated pathway and interacts with DNA. Biochemistry 2004; 43(12): 3518-26.
  62. Arizala JAC, Takahashi M, Burnett JC, Ouellet DL, Li H, Rossi JJ. Nucleolar localization of HIV-1 rev is required, yet insufficient for production of infectious viral particles. AIDS Res Hum Retroviruses 2018; 34(11): 961-81.
  63. Chang DK, Chiu CY, Kuo SY, Lin WC, Lo A, Wang YP, et al. Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors. J Biol Chem 2009; 284(19): 12905-16.
  64. Luo G, Yu X, Jin C, Yang F, Fu D, Long J, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm 2010; 385(1-2): 150-6.
  65. Morris MC, Deshayes S, Heitz F, Divita G. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 2008; 100(4): 201-17.
  66. Veldhoen S, Laufer SD, Trampe A, Restle T. Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res 2006; 34(22): 6561-73.
  67. Alipour M, Majidi A, Molaabasi F, Sheikhnejad R, Hosseinkhani S. In vivo tumor gene delivery using novel peptideticles: pH-responsive and ligand targeted core-shell nanoassembly. Int J Cancer 2018; 143(8): 2017-28.
  68. Ye Y, Chen X. Integrin targeting for tumor optical imaging. Theranostics 2011; 1: 102-26.
  69. Alipour M, Baneshi M, Hosseinkhani S, Mahmoudi R, Jabari Arabzadeh A, Akrami M, et al. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review.
    J Biomed Mater Res A 2020; 108(4): 839-50.
  70. Alberici L, Roth L, Sugahara KN, Agemy L, Kotamraju VR, Teesalu T, et al. De novo design of a tumor-penetrating peptide. Cancer Res 2013; 73(2): 804-12.
  71. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009; 16(6): 510-20.
  72. Majidi A, Nikkhah M, Sadeghian F, Hosseinkhani S. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: Imitation of a real cargo. Eur J Pharm Biopharm 2016; 107: 191-204.
  73. Majidi A, Nikkhah M, Hosseinkhani S. Design and bioinformatics analysis of novel biomimetic peptides as nanocarriers for gene transfer. Nanomed J 2015; 2(1): 29-38.
  74. Alipour M, Hosseinkhani S, Sheikhnejad R, Cheraghi R. Nano-biomimetic carriers are implicated in mechanistic evaluation of intracellular gene delivery. Sci Rep 2017; 7(1): 41507.
  75. Cheraghi R, Nazari M, Alipour M, Majidi A, Hosseinkhani S. Development of a targeted anti-HER2 scFv chimeric peptide for gene delivery into HER2-positive breast cancer cells. Int J Pharm 2016; 515(1-2): 632-43.
  76. Khamehchian S, Nikkhah M, Madani R, Hosseinkhani S. Enhanced and selective permeability of gold nanoparticles functionalized with cell penetrating peptide derived from maurocalcine animal toxin. J Biomed Mater Res A 2016; 104(11): 2693-700.
  77. Golestanipour A, Nikkhah M, Aalami A, Hosseinkhani S. Gene delivery to tobacco root cells with single-walled carbon nanotubes and cell-penetrating fusogenic peptides. Mol Biotechnol 2018; 60(12): 863-78.
  78. Ghafary SM, Nikkhah M, Hatamie S, Hosseinkhani S. Simultaneous gene delivery and tracking through preparation of photo-luminescent nanoparticles based on graphene quantum dots and chimeric peptides. Sci Rep 2017; 7(1): 9552.
  79. Moasses Ghafary S, Rahimjazi E, Hamzehil H, Modarres Mousavi SM, Nikkhah M, Hosseinkhani S. Design and preparation of a theranostic peptideticle for targeted cancer therapy: Peptide-based codelivery of doxorubicin/curcumin and graphene quantum dots. Nanomedicine 2022; 42: 102544.
  80. Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9(2): 102-9.
  81. Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 2011; 12(6): 3705-22.
  82. Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci 2020; 21(7): 2536.
  83. Tan X, Zhang Y, Wang Q, Ren T, Gou J, Guo W,
    et al. Cell-penetrating peptide together with PEG-modified mesostructured silica nanoparticles promotes mucous permeation and oral delivery of therapeutic proteins and peptides. Biomater Sci 2019; 7(7): 2934-50.
  84. Gessner I, Klimpel A, Klußmann M, Neundorf I, Mathur S. Interdependence of charge and secondary structure on cellular uptake of cell penetrating peptide functionalized silica nanoparticles. Nanoscale Advances 2020; 2(1): 453-62.
  85. Gao G, Jiang YW, Jia HR, Sun W, Guo Y, Yu XW, et al. Corrigendum to "From perinuclear to intranuclear localization: A cell-penetrating peptide modification strategy to modulate cancer cell migration under mild laser irradiation and improve photothermal therapeutic performance" [Biomaterials 223 (2019) 119443]. Biomaterials 2020; 257: 120074.
  86. Yan X, Li S, Qu Y, Wang W, Chen B, Liu S, et al. Redox-responsive multifunctional polypeptides conjugated with Au nanoparticles for tumor-targeting gene therapy and their 1 + 1 > 2 synergistic effects. ACS Biomater Sci Eng 2020; 6(1): 463-73.
  87. Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, et al. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials 2014; 35(21): 5605-18.
  88. Weng H, Bejjanki NK, Zhang J, Miao X, Zhong Y, Li H, et al. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun 2019; 511(3): 597-603.
  89. He Y, Guo S, Wu L, Chen P, Wang L, Liu Y, et al. Near-infrared boosted ROS responsive siRNA delivery and cancer therapy with sequentially peeled upconversion nano-onions. Biomaterials 2019; 225: 119501.
  90. Cai H, Liang Z, Huang W, Wen L, Chen G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm 2017; 532(1): 55-65.
  91. He Z, Liu Z, Tian H, Hu Y, Liu L, Leong KW, et al. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 2018; 10(7): 3307-19.
  92. Juang V, Chang CH, Wang CS, Wang HE, Lo YL. pH-Responsive PEG-shedding and targeting peptide-modified nanoparticles for dual-delivery of irinotecan and microRNA to enhance tumor-specific therapy. Small 2019; 15(49): e1903296.
  93. Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 2016; 10(11): 9999-10012.
  94. Ma P, Yu H, Zhang X, Mu H, Chu Y, Ni L, et al. Increased active tumor targeting by an αvβ3-targeting and cell-penetrating bifunctional peptide-mediated dendrimer-based conjugate. Pharm Res 2017; 34(1): 121-35.
  95. Perillo E, Allard-Vannier E, Falanga A, Stiuso P, Vitiello MT, Galdiero M, et al. Quantitative and qualitative effect of gH625 on the nanoliposome-mediated delivery of mitoxantrone anticancer drug to HeLa cells. Int J Pharm 2015; 488(1-2): 59-66.
  96. Han SS, Li ZY, Zhu JY, Han K, Zeng ZY, Hong W, et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and
    nuclear drug delivery. Small 2015; 11(21): 2543-54.
  97. Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann K, Kurrikoff K, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci Rep 2017; 7(1): 9159.
  98. Yang Y, Xie X, Xu X, Xia X, Wang H, Li L, et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy. Colloids Surf B Biointerfaces 2016; 146: 607-15.
  99. Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, et al. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 2010; 31(4): 769-78.