فراوانی ژن‌های متالوبتالاکتاماز و بتالاکتامازهای طیف گسترده در باکتری‌های گرم منفی جدا شده از پنومونی وابسته به ونتیلاتور در بخش مراقبت‌های ویژه بیمارستان امام رضا(ع) شهر کرمانشاه

نوع مقاله : Original Article(s)

نویسندگان

1 کارشناسی ارشد میکروب‌شناسی، کمیته‌ی تحقیقات دانشجویی، گروه میکروب‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

2 استادیار باکتری‌شناسی پزشکی، گروه میکروب‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

3 کارشناسی ارشد، کمیته‌ی تحقیقات دانشجویی، گروه میکروب شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

4 استاد، مرکز تحقیقات باروری و ناباروری، گروه میکروبیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

5 استادیار باکتری‌شناسی پزشکی، دانشکده‌ی علوم پزشکی بهبهان، بهبهان، ایران

6 دانشیار، مرکز تحقیقات فناوری پزشکی، گروه میکروبیولوژی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

چکیده

مقاله پژوهشی




مقدمه: پنومونی وابسته به ونتیلاتور، شایع‌ترین عفونت اکتسابی بیمارستانی است که مسؤول افزایش مرگ و میر بیماران بستری در بخش مراقبت‌های ویژه است. مطالعه‌ی حاضر، با هدف بررسی فراوانی ژن‌های MBL و ESBL و تعیین الگوهای مقاومت آنتی‌بیوتیکی در باسیل‌های گرم منفی جدا شده از ونتیلاتور در بخش (Intensive care unit) ICU بیمارستان امام رضا(ع) شهر کرمانشاه طراحی شد.
روش‌ها: پس از جمع‌آوری نمونه‌ها و تعیین هویت باکتری‌ها به وسیله‌ی روش‌های استاندارد بیوشیمیایی و کشت میکروبی، 152 ایزوله‌ی باکتریایی شناسایی شد. شناسایی ژن‌های ESBL و MBL با روش فنوتیپی DDCT و روش مولکولی PCR با استفاده از پرایمرهای اختصاصی انجام شد.
یافته‌ها: شایع‌ترین میکروارگانیسم جداسازی شده از بیماران (Ventilator-associated pneumonia) VAP، کلبسیلا پنومونیه (56/2 درصد) بود. در مجموع، فراوانی ژن‌های ESBL و MBL (74/34 درصد) 113 و (5/26 درصد) 8 بود. الگوی مقاومت آنتی‌بیوتیکی نشان داد که 53/36 درصد ایزوله‌ها به سفتازیدیم، سفوتاکسیم و ایمی‌پنم مقاوم هستند. ژن blaSHVOS با فراوانی (49/34 درصد) 75، بیشترین فراوانی ژنوتیپی را داشت. ژن blaVIM در هیچ کدام از ایزوله‌ها یافت نشد.
نتیجه‌گیری: مقاومت بالای ایزوله‌های اسینتوباکتر بومانی و کلبسیلا پنومونیه نسبت به آنتی‌بیوتیک‌های مذکور و شیوع بالای ژن‌های مولد ESBL در ایزوله‌های کلبسیلا پنومونیه، زنگ هشدار قابل توجهی در ICU بخش‌های مختلف بیمارستان امام رضا(ع) است. ظهور ژن blaPER-1 در بیماران مبتلا به VAP نگرانی دیگری در بیماران مبتلا به VAP در بخش مراقبت‌های ویژه ایجاد کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Frequency of Metallo-Beta-Lactamase and Extended- Spectrum Beta-Lactamase genes in Gram-Negative Bacteria Isolated from Ventilator- Associated Pneumonia in the Intensive Care Unit of Imam Reza Hospital in Kermanshah

نویسندگان [English]

  • Sepide Kadivarian 1
  • Jale Moradi 2
  • Mohsen Najafi 3
  • Mohsen Azizi 3
  • Ramin Abiri 4
  • Sara Kooti 5
  • Amirhooshang Alvandi 6
1 MSc, Student Research Committee, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2 Assistant Professor of Medical Bacteriology, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
3 MSc, Student Research Committee, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
4 Professor, Fertility and Sterility Research Center, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
5 Assistant Professor of Medical Bacteriology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
6 Associate Professor, Medical Technology Research Center, and Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
چکیده [English]

Background: Ventilator-associated pneumonia is the most common nosocomial infection that is responsible for increasing the mortality of patients admitted to the intensive care unit. The aim of this study was to evaluate the frequency of MBL and ESBL genes and to determine the patterns of antibiotic resistance in gram-negative bacilli isolated from ventilators in the ICU of Imam Reza Hospital in Kermanshah.
Methods: After collecting samples and identifying the bacteria by standard biochemical and microbial culture methods, 152 bacterial isolates were identified. ESBL and MBL genes were identified by phenotypic DDCT method and molecular PCR method using specific primers.
Findings: The most common microorganism isolated from ventilator-associated pneumonia (VAP) patients was Klebsiella pneumoniae (2.56%). In total, the frequency of ESBL and MBL genes was 113 (74.34%) and
8 (5.26%). The antibiotic resistance pattern showed that 36.53% of the isolates were resistant to ceftazidime, cefotaxime and imipenem. The blaSHVOS gene with a frequency of 75 (49.34%) had the highest genotypic frequency. The blaVIM gene was not found in any of the isolates.
Conclusion: The high resistance of Acinetobacter baumannii and Klebsiella pneumoniae isolates to the mentioned antibiotics and the high prevalence of ESBL-producing genes in Klebsiella pneumoniae isolates is a significant alarm in the ICU of different wards of Imam Reza Hospital. The emergence of the blaPER-1 gene in patients with VAP has raised another worry in patients with VAP in the intensive care unit.

کلیدواژه‌ها [English]

  • Ventilator-associated pneumonia
  • Extended Spectrum Beta-Lactamase
  • Metallo-Beta-Lactamase
  • Intensive care unit
  1. Dey A, Bairy I. Incidence of multidrug-resistant organisms causing ventilator-associated pneumonia in a tertiary care hospital: a nine months' prospective study. Ann Thorac Med 2007; 2(2): 52-7.
  2. Feng DY, Zhou YQ, Zhou M, Zou XL, Wang YH, Zhang TT. Risk factors for mortality due to ventilator-associated pneumonia in a chinese hospital: a retrospective study. Med Sci Monit 2019; 25: 7660-5.
  3. Nusrat T, Akter N, Rahman NAA, Godman B, DT DR, Haque M. Antibiotic resistance and sensitivity pattern of Metallo-β-Lactamase Producing Gram-Negative Bacilli in ventilator-associated pneumonia in the intensive care unit of a public medical school hospital in Bangladesh. Hosp Pract 2020; 48(3): 128-36.
  4. Bandić-Pavlović D, Zah-Bogović T, Žižek M, Bielen L, Bratić V, Hrabač P, et al. Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. J Chemother 2020; 32(7): 344-58.
  5. Gao B, Li X, Yang F, Chen W, Zhao Y, Bai G, et al. Molecular Epidemiology and Risk Factors of Ventilator-Associated Pneumonia Infection Caused by Carbapenem-Resistant Enterobacteriaceae. Front Pharmacol 2019; 10: 262.
  6. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M Antimicrob Agents Chemother 2004; 48(1): 1-14.
  7. Xu H, Huo C, Sun Y, Zhou Y, Xiong Y, Zhao Z, et al. Emergence and molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates harboring bla (CTX-M-15) extended-spectrum β-lactamases causing ventilator-associated pneumonia in China. Infect Drug Resist 2018; 12: 33-43.
  8. Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 2015; 47(2): 81-97.
  9. Ghasemian A, Salimian Rizi K, Rajabi Vardanjani H, Nojoomi F. Prevalence of Clinically isolated metallo-beta-lactamase-producing pseudomonas aeruginosa, coding genes, and possible risk factors in Iran. Iran J Pathol 2018; 13(1): 1-9.
  10. Timsit JF, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, et al. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med 2019; 45(2): 172-89.
  11. Abdalhamid B, Pitout JDD, Moland ES, Hanson ND. Community-onset disease caused by Citrobacter freundii producing a novel CTX-M beta-lactamase, CTX-M-30, in Canada. Antimicrob Agents Chemother 2004; 48(11): 4435-7.
  12. De Champs C, Sirot D, Chanal C, Bonnet R, Sirot J. A 1998 survey of extended-spectrum beta-lactamases in Enterobacteriaceae in France. The French Study Group. Antimicrob Agents Chemother 2000; 44(11): 3177-9.
  13. Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns 2010; 36(1): 70-4.
  14. Hou C, Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int J Clin Exp Med 2015; 8(8): 13859-63.
  15. Tuon FF, Graf ME, Merlini A, Rocha JL, Stallbaum S, Arend LN, et al. Risk factors for mortality in patients with ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae. Braz J Infect Dis 2017; 21(1): 1-6.
  16. Sharpe JP, Magnotti LJ, Weinberg JA, Brocker JA, Schroeppel TJ, Zarzaur BL, et al. Gender disparity in ventilator-associated pneumonia following trauma: identifying risk factors for mortality. J Trauma Acute Care Surg. 2014;77(1):161-5.
  17. Cui J, Chen QQ, Liu TT, Li SJ. Risk factors for early-onset ventilator-associated pneumonia in aneurysmal subarachnoid hemorrhage patients. Braz J Med Biol Res 2018; 51(7): e6830.
  18. Mathai AS, Phillips A, Isaac R. Ventilator-associated pneumonia: A persistent healthcare problem in Indian Intensive Care Units! Lung India 2016; 33(5): 512-6.
  19. Royer S, Faria AL, Seki LM, Chagas TP, Campos PA, Batistão DW, et al. Spread of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clones in patients with ventilator-associated pneumonia in an adult intensive care unit at a university hospital. Braz J Infect Dis 2015; 19(4): 350-7.
  20. Krishnamurthy V, Vijaykumar GS, Sudeepa Kumar M, Prashanth HV, Prakash R, Nagaraj ER. Phenotypic and genotypic methods for detection of extended spectrum β lactamase producing Escherichia coli and Klebsiella pneumoniae isolated from ventilator associated pneumonia. J Clin Diagn Res 2013; 7(9): 1975-8.
  21. Rezai MS, Ahangarkani F, Rafiei A, Hajalibeig A, Bagheri-Nesami M. Extended-spectrum beta-lactamases producing pseudomonas aeruginosa isolated from patients with ventilator associated nosocomial infection. Arch Clin Infect Dis 2018; 13(4): e13974.
  22. Gupta R, Malik A, Rizvi M, Ahmed SM. Incidence of multidrug-resistant Pseudomonas spp. in ICU patients with special reference to ESBL, AMPC, MBL and biofilm production. J Glob Infect Dis 2016; 8(1): 25-31.
  23. Wang Y, Zhang R, Liu W. Distribution and drug resistance of pathogenic bacteria in ventilator-associated pneumonia at a local hospital of North-eastern China. Infect Drug Resist 2018; 11: 2249-55.
  24. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017; 50(3): 1700582.
  25. Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19(1): 219.
  26. Cillóniz C, Dominedò C, Torres A. An overview of guidelines for the management of hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria. Curr Opin Infect Dis 2019; 32(6): 656-62.
  27. Zilahi G, Artigas A, Martin-Loeches I. What’s new in multidrug-resistant pathogens in the ICU? Ann Intensive Care 2016; 6(1): 96.
  28. Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, et al. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 2013; 39(4): 672-81.
  29. Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38(8): 1651-64.
  30. Huang Y, Zhou Q, Wang W, Huang Q, Liao J, Li J, et al. Acinetobacter baumannii ventilator-associated pneumonia: Clinical efficacy of combined antimicrobial therapy and in vitro drug sensitivity test results. Front Pharmacol 2019; 10: 92.
  31. Rezai MS, Ahangarkani F, Rafiei A, Hajalibeig A, Bagheri-Nesami M. Extended-spectrum beta-lactamases producing pseudomonas aeruginosa isolated from patients with ventilator associated nosocomial infection. Arch Clin Infect Dis 2018; 13(4): e13974.
  32. Bandić-Pavlović D, Zah-Bogović T, Žižek M, Bielen L, Bratić V, Hrabač P, et al. Gram-negative bacteria as causative agents of ventilator-associated pneumonia and their respective resistance mechanisms. J Chemother 2020; 32(7): 344-58.
  33. Vaziri S, Mansouri F, Abiri R, Alvandi A, Mortazavi SH, Ahmadi K, et al. Prevalence study of extended spectrum beta-lactamase in klebsiella pneumonia isolated from patients with ventilator-associated pneumonia in Kermanshah City, Iran [in Persian]. J Isfahan Med School 2017; 35(444): 1113-9.
  34. Yazdi M, Nazemi A, Mirinargasi M, Jafarpour M, Sharifi S, Branch T. Genotypic versus Phenotypic methods to detect extended-spectrum beta-lactamases (ESBLs) in uropathogenic Escherichia coli. Ann Biol Res 2012; 3(5): 2454-8.
  35. Torres A, Lee N, Cilloniz C, Vila J, Van der Eerden M. Laboratory diagnosis of pneumonia in the molecular age. Eur Respir J 2016; 48(6): 1764-78.
  36. Bailey KL, Kalil AC. Ventilator-associated pneumonia (VAP) with multidrug-resistant (MDR) pathogens: optimal treatment? Curr Infect Dis Rep 2015; 17(8): 494.
  37. Vitkauskienė A, Skrodenienė E, Dambrauskienė A, Bakšytė G, Macas A, Sakalauskas R. Characteristics of carbapenem-resistant Pseudomonas aeruginosa strains in patients with ventilator-associated pneumonia in intensive care units. Medicina 2011; 47(12): 652-6.
  38. Shivaprasad A, Antony B, Shenoy P. Comparative evaluation of four phenotypic tests for detection of metallo-β-lactamase and carbapenemase production in Acinetobacter baumannii. J Clin Diagn Res 2014; 8(5): DC05-DC08.
  39. Patil HV, Mohite ST, Patil VC. Metallo-beta-lactamase-producing multidrug-pesistant acinetobacter isolates in patients with ventilator-associated pneumonia. J Nat Sc Biol Med 2021; 12: 64-74.
  40. Safari M, Mozaffari Nejad AS, Bahador A, Jafari R, Alikhani MY. Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi J Biol Sci 2015; 22(4): 424-9.
  41. Kabbaj H, Seffar M, Belefquih B, Akka D, Handor N, Amor M, et al. Prevalence of metallo-β-lactamases producing Acinetobacter baumannii in a Moroccan hospital. ISRN Infectious Diseases 2013; 1-3.
  42. Hasanin A, Mukhtar A, El-adawy A, Elazizi H, Lotfy A, Nassar H, et al. Ventilator associated pneumonia caused by extensive-drug resistant Acinetobacter species: colistin is the remaining choice. Egyptian J Anaesthesia 2016; 32(3): 409-13.
  43. Al-Agamy MH, Khalaf NG, Tawfick MM, Shibl AM, El Kholy A. Molecular characterization of carbapenem-insensitive Acinetobacter baumannii in Egypt. Int J Infect Dis 2014; 22: 49-54.
  44. Shilpa AG. Multidrug resistant ventilator associated pneumonia: A persistent and dreaded complication in Indian tertiary care hospitals. IP Int J Med Microbiol Trop Dis 2020; 6(1): 23-27.
  45. Bedenić B, Vraneš J, Bošnjak Z, Marijan T, Mlinarić-Džepina A, Kukovec T, et al. Emergence of CTX-M group 1 extended-spectrum ß-lactamase–producing Klebsiella pneumoniae strains in the community. Med Glas 2010; 7(1): 32-9.
  46. Rezai MS, Rafiei A, Ahangarkani F, Bagheri-Nesami M, Nikkhah A, Shafahi K, et al. Emergence of extensively drug resistant acinetobacter baumannii-encoding integrons and extended-spectrum beta-lactamase genes isolated from ventilator-associated pneumonia patients. Jundishapur J Microbiol 2017; 10(7): e14377.
  47. Bokaeian M, Zahedani SS, Bajgiran MS, Moghaddam AA. Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum β-lactamases. Jundishapur J Microbiol 2015; 8(1): e13783.
  48. Gupta V, Singla N, Gombar S, Palta S, Chander J. Prevalence of multidrug-resistant pathogens and their antibiotic susceptibility pattern from late-onset ventilator-associated pneumonia patients from a tertiary-care hospital in North India. J Assoc Chest Physicians 2018; 6(1): 4-11.
  49. Ye Q-h, Lau Y, Liang B, Tian S-f. Antimicrobial resistance, genotypic characterization and pulsed-field gel electrophoresis typing of extended spectrum β-lactamases-producing clinical Escherichia coli strains in Macao, China. Chin Med J 2011; 124(17): 2701-7.
  50. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev
    2005; 18(4): 657-86.
  51. Anwar M, Ejaz H, Zafar A, Hamid H. Phenotypic detection of metallo-beta-lactamases in carbapenem resistant Acinetobacter baumannii isolated from pediatric patients in Pakistan. J pathog 2016; 2016: 8603964.
  52. Amudhan MS, Sekar U, Kamalanathan A, Balaraman S. blaIMP and blaVIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J Infect Dev Ctries 2012; 6(11): 757-62.