تشخیص خودکار بیماران مبتلا به اختلال شناختی خفیف از روی سیگنال‌های الکتروانسفالوگرام با استفاده از تجزیه موجک بسته‌ای و الگوی فضایی مشترک

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، گروه مهندسی پزشکی، کمیته‌ی تحقیقات دانشجویی، دانشکده‌ی فناوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استاد، گروه مهندسی پزشکی، مرکز تحقیقات پردازش تصویر و سیگنال پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 گروه مهندسی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان ، ایران

چکیده

مقاله پژوهشی




مقدمه: اختلال شناختی خفیف (Mild cognitive impairment) MCI، به‌عنوان مرحله‌ی ابتدایی بیماری آلزایمر شناخته می‌شود. این بیماری علائمی خفیف‌تر از بیماری آلزایمر دارد طوری که مشکلات جدی در اعمال و کارهای روزانه ایجاد نمی‌کند. به دلیل ماهیت و علائم خفیف اختلال شناختی خفیف، تشخیص این بیماری به‌مراتب دشوارتر از تشخیص آلزایمر است. با این حال تشخیص زودهنگام این بیماری، احتمال درمان آن را افزایش می‌دهد.
روش‌ها: روش به‌کار گرفته شده، یک روش پردازشی پیشرفته با به‌کارگیری تبدیل موجک گسسته در پیش ردازش و استفاده از موجک بسته‌ای و  فیلترهای فضایی- طیفی در استخراج ویژگی از سیگنال‌های الکتروانسفالوگرام است. در این مطالعه از سیگنال‌های الکتروانسفالوگرام مربوط به 29 فرد بیمار و 32 فرد سالم استفاده شده است.
یافته‌ها: استفاده از ویولت بسته‌ای جهت استخراج زیر باندهای فرکانسی سیگنال الکتروانسفالوگرام موجب استخراج دقیق این زیرباندها شد به گونه‌ای که استخراج ویژگی با استفاده از ویژگی‌های استخراج شده توسط بانک فیلتر الگوی فضایی مشترک موجب افزایش دقت تشخیص افراد بیمار تا 100 درصد گردید.
نتیجه‌گیری: این مطالعه با استخراج ویژگی‌های طیفی- فضایی از زیرباندهای فرکانسی سیگنال الکتروانسفالوگرام برآمده از ویولت بسته‌ای روشی جدید جهت تشخیص اختلال شناختی خفیف ارائه نمود. نتایج این مطالعه بر نقش استفاده از موجک بسته‌ای در تفکیک زیرباندهای فرکانسی و اعمال الگوی فضایی مشترک روی زیر باندهای فرکانسی برای استخراج ویژگی‌های مؤثر در تفکیک افراد سالم از مبتلایان به اختلال شناختی خفیف تأکید دارد.

تازه های تحقیق

محمدعلی گنجعلی: Google Scholar, PubMed

علیرضا مهری دهنوی: Google Scholar, PubMed

وحید صادقی: Google Scholar

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Automatic Diagnosis of Mild Cognitive Impairment from Electroencephalogram Using Joint Wavelet Packet Decomposition and Common Spatial Pattern

نویسندگان [English]

  • Mohammadali Ganjali 1
  • Alireza Mehridehnavi 2
  • Vahid Sadeghi 3
1 PhD Candidate, Department of Biomedical Engineering, Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Professor, Department of Biomedical Engineering, Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Biomedical Engineering, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Mild cognitive impairment (MCI) is identified as the initial stage of Alzheimer's disease. This condition presents less severe symptoms compared to Alzheimer's Disease (AD) to the extent that it does not significantly impact daily activities. Due to its subtle symptoms, diagnosing MCI is considerably more challenging than diagnosing Alzheimer's. However, early detection of MCI enhances the chances of treatment and prevention of its progression to Alzheimer's and dementia.
Methods: This study introduced a novel method for diagnosing MCI using an automated signal processing approach for electroencephalogram (EEG) signals. The method employs advanced signal processing techniques, including discrete wavelet transform in preprocessing and wavelet packet decomposition alongside spatial-spectral filters for feature extraction from EEG signals. EEG signals from 29 patients and 32 healthy individuals were utilized in this study.
Findings: The proposed method achieved a classification accuracy of 100% using a random subsampling validation approach. Wavelet packet decomposition effectively isolated frequency sub-bands within the EEG signals, enabling precise extraction. Furthermore, feature extraction using features extracted by the filter bank common spatial pattern (FBCSP) contributed to the increased classification accuracy of the two groups.
Conclusion: This study introduces a novel approach for MCI diagnosis by extracting spatial-spectral features from frequency sub-bands of EEG signals obtained through wavelet packet decomposition. The findings underscore the significance of wavelet packet decomposition in separating frequency sub-bands and applying a common spatial pattern filter on these sub-bands for effective feature extraction in distinguishing healthy individuals from those with MCI.

کلیدواژه‌ها [English]

  • Cognitive dysfunction
  • Alzheimer's disease
  • Wavelet analysis
  • Early diagnosis
  • Electroencephalography
  1. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46.
  2. Twarowski B, Herbet M. Inflammatory processes in alzheimer’s disease—pathomechanism, diagnosis and treatment: a review. Int J Mol Sci 2023; 24(7): 6518.
  3. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer's disease. Lancet 2021; 397(10284): 1577-90.
  4. Liss JL, Seleri Assunção SS, Cummings J, Atri A, Geldmacher DS, Candela SF, et al. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer’s disease (MCI and dementia) in primary care: a review and synthesis. J Intern Med 2021; 290(2): 310-34.
  5. Ashtari-Majlan M, Seifi A, Dehshibi MM. A multi-stream convolutional neural network for classification of progressive MCI in Alzheimer’s disease using structural MRI images. IEEE Journal of Biomedical and Health Informatics 2022; 26(8): 3918-26.
  6. McBride JC, Zhao X, Munro NB, Smith CD, Jicha GA, Hively L, et al. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. Comput Methods Programs Biomed 2014; 114(2): 153-63.
  7. Ganjali MA, Shalchyan V. Extracting spatial spectral patterns from EEG signals for diagnosis of mild cognitive impairment. Journal of Electrical Engineering 2019; 48(4): 1741-52.
  8. Tawhid MNA, Siuly S, Kabir E, Li Y. Exploring frequency band-based biomarkers of EEG signals for mild cognitive impairment detection. IEEE Trans Neural Syst Rehabil Eng 2024; 32: 189-99.
  9. Sun J, Wang B, Niu Y, Tan Y, Fan C, Zhang N, et al. Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer’s disease: a review. Entropy (Basel) 2020; 22(2): 239.
  10. Choi J, Ku B, Doan DNT, Park J, Cha W, Kim JU, Lee KH. Prefrontal EEG slowing, synchronization, and ERP peak latency in association with predementia stages of Alzheimer’s disease. Front Aging Neurosci 2023; 15: 1131857.
  11. Dauwels J, Vialatte F, Latchoumane C, Jeong J, Cichocki A. Loss of EEG synchrony in early-stage AD patients: a study with multiple synchrony measures and multiple EEG data sets. Annu Int Conf IEEE Eng Med Biol Soc 2009; 2009: 2224-7.
  12. König T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2005; 26(2): 165-71.
  13. Babiloni C, Vecchio F, Lizio R, Ferri R, Rodriguez G, Marzano N, et al. Resting state cortical rhythms in mild cognitive impairment and Alzheimer's disease: electroencephalographic evidence. J Alzheimers Dis 2011; 26(Suppl 3): 201-14.
  14. Blinowska KJ, Rakowski F, Kaminski M, Fallani FDV, Del Percio C, Lizio R, et al. Functional and effective brain connectivity for discrimination between Alzheimer’s patients and healthy individuals: A study on resting state EEG rhythms. Clin Neurophysiol 2017; 128(4): 667-80.
  15. Latchoumane C-FV, Vialatte F-B, Solé-Casals J, Maurice M, Wimalaratna SR, Hudson N, et al. Multiway array decomposition analysis of EEGs in Alzheimer's disease. J Neurosci Methods 2012; 207(1): 41-50.
  16. Vialatte F-B, Solé-Casals J, Maurice M, Latchoumane C, Hudson N, Wimalaratna S, et al. Improving the quality of EEG data in patients with Alzheimer’s disease using ICA. In: Köppen M, Kasabov N, Coghill G. editors. Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science. Heidelberg, Berlin: Springer; 2008.
  17. Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 2000; 8(4): 441-6.
  18. Latchoumane CFV, Vialatte F, Cichocki A, Jeong J. Multiway analysis of Alzheimer’s disease: classification based on space-frequency characteristics of EEG time series. London, UK: Proceedings of the World Congress on Engineering; 2008.
  19. Ang KK, Chin ZY, Wang C, Guan C, Zhang H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 2012; 6: 39.
  20. Kashefpoor M, Rabbani H, Barekatain M. Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features. J Med Signals Sens 2016; 6(1): 25-32.
  21. Kashefpoor M, Rabbani H, Barekatain M. Supervised dictionary learning of EEG signals for mild cognitive impairment diagnosis. Biomedical Signal Processing and Control 2019; 53: 101559.
  22. Hu D, Li W, Chen X. Feature extraction of motor imagery EEG signals based on wavelet packet decomposition. Harbin, China: The 2011 IEEE/ICME international conference on complex medical engineering; 2011.
  23. Stigler SM. Francis Galton's account of the invention of correlation. Statist Sci 1989; 4(2): 73-9.
  24. Liu H, Sun J, Liu L, Zhang H. Feature selection with dynamic mutual information. Pattern Recognition 2009; 42(7): 1330-9.
  25. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intelligent Systems and their applications 1998; 13(4): 18-28.