نوع مقاله : مقاله مروری
نویسندگان
1 استاد، گروه آمار زیستی، دانشکدهی بهداشت، مرکز تحقیقات علوم دادههای سلامت، پژوهشکدهی سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
2 دانشجوی دکترا، گروه آمار زیستی، دانشکدهی بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
3 استاد، گروه آمار زیستی، دانشکدهی بهداشت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران.
4 دانشجوی دکترا، گروه آمار زیستی، دانشکدهی بهداشت، مرکز تحقیقات علوم دادههای سلامت، پژوهشکدهی سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
چکیده
تازه های تحقیق
بهزاد مهکی: PubMed , Google Scholar
سمیرا جعفری: Google Scholar
منصور رضایی: PubMed ,Google Scholar
لیلا سلوکی: Google Scholar
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Background: The correlation coefficient is a statistical measure that measures the degree of correlation between two variables and takes values between -1 and +1, which indicates the strength and direction of the linear relationship between two variables. Correlation coefficients play a significant role in medical science studies. These coefficients help researchers to identify and measure the relationship between different clinical variables and health outcomes.
Description of the Article: Considering the importance of calculating correlation coefficients in medical research, the purpose of this paper is to introduce various types of correlation coefficients, simple and applied statistical concepts and, methods to investigate the relationship between variables according to their nature and how to calculate them. Types of commonly used correlation coefficients, including Pearson, Spearman, Kendall, Phi, V Kramer, Summers Delta, Gamma, agreement coefficient and, Landa correlation coefficient will be analyzed using SPSS and R software. Also, the conditions of using each of the correlation coefficients will be discussed according to the different assumptions and the unique interpretation of each of the coefficients. Finally, examples of the calculation and interpretation of each of the correlation coefficients in medical sciences are provided.
Conclusion: Correlation is the most widely used statistical measure to evaluate the relationships between variables. However, it should be used with caution. Otherwise, it can lead to erroneous interpretations and results.
کلیدواژهها [English]