تأثیر فعالیت ورزشی حاد و مزمن در شرایط هایپوکسی بر مقادیر گردش خونی فاکتور رشد اندوتلیال عروقی: مروری نظام‌مند و فراتحلیل

نوع مقاله : Review Article

نویسندگان

1 دانشیار، گروه علوم ورزشی، دانشکده‌ی علوم انسانی، دانشگاه کاشان، کاشان، ایران

2 استادیار، گروه علوم ورزشی، دانشکده‌ی علوم انسانی، دانشگاه کاشان، کاشان، ایران

10.48305/jims.v42.i789.0963

چکیده

مقاله مروری




مقدمه: هدف فراتحلیل حاضر، مقایسه‌ی تأثیر تمرین حاد و مزمن در شرایط هایپوکسی در برابر نورموکسی بر فاکتور رشد اندوتلیال عروقی (Vascular endothelial growth factor) VEGF می‌باشد.
روش‌ها: جستجوی جامع در پایگاه‌های اطلاعاتی PubMed، Web of Science و Scopus برای پیدا کردن مطالعات اصیل از زمان شروع تا تاریخ 30/01/1403انجام صورت گرفت. معیارهای ورود به تحقیق حاضر شامل مقالات منتشر ‌شده در مجلات فارسی و انگلیسی زبان، دارای آزمودنی‌های انسان، بررسی‌کننده‌ی اثر حاد و مزمن تمرین ورزشی در شرایط هایپوکسی در برابر تمرین ورزشی مشابه در شرایط نورموکسی و اندازه‌گیری مقادیر VEGF بودند. میانگین استاندارد شده (SMD) و فاصله‌ی اطمینان 95 درصد (CIs) با استفاده از مدل تصادفی محاسبه شد.
یافته‌ها: در مجموع، 16 مطالعه با 283 آزمودنی و دامنه‌ی سنی تقریبی بین 15 تا 30 سال وارد فراتحلیل شدند. نتایج تحلیل داده‌ها نشان داد که فعالیت ورزشی حاد در شرایط هایپوکسی [0/06 = P، 0/28 = SMD] و نورموکسی [0/13 = P، 0/25 = SMD] منجر به تغییرات معنی‌دار در VEGF بلافاصله بعد از فعالیت ورزشی نسبت به پیش از فعالیت ورزشی نمی‌شوند. با این حال، فعالیت ورزشی مزمن در شرایط هایپوکسی منجر به افزایش معنی‌دار VEGF نسبت به فعالیت ورزشی مزمن در شرایط نورموکسی می‌شود [0/001 = P، 0/76 = SMD].
نتیجه‌گیری: نتایج مطالعه‌ی حاضر نشان داد که فعالیت ورزشی حاد در شرایط هایپوکسی و نورموکسی اثرات قابل توجهی بر VEGF نداشت. فعالیت ورزشی مزمن در شرایط هایپوکسی ممکن است منجر به افزایش مقادیر گردش خونی VEGF نسبت به فعالیت ورزشی مزمن در شرایط نورموکسی شود که نشان‌دهنده‌ی نقش هایپوکسی در اثرات مفید تمرینات ورزشی می‌باشد.

تازه های تحقیق

محمد جواد پوروقار: Google Scholar 

موسی خلفی: Google Scholar 

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Acute and Chronic Exercise in Hypoxia on Circulating Vascular Endothelial Growth Factor Levels: A Systematic Review and Meta-Analysis

نویسندگان [English]

  • Mohammad Javad Pourvaghar 1
  • Mousa Khalafi 2
1 Associated Professor, Department of Sport Sciences, School of Humanities, University of Kashan, Kashan, Iran
2 Assistant Professor, Department of Sport Sciences, School of Humanities, University of Kashan, Kashan, Iran
چکیده [English]

Background: The present meta-analysis aims to compare the effect of acute and chronic exercise in hypoxia versus normoxia on vascular endothelial growth factor (VEGF).
Methods: In April 2024, a comprehensive search was conducted in PubMed, Web of Science, and Scopus databases to find original studies. The inclusion criteria for this study included articles published in Persian and English-language journals, with human subjects, investigating the acute and chronic effect of exercise training in hypoxia against similar exercise training in normoxia and measuring serum or plasma levels of vascular endothelial growth factor. Standardized mean (SMD) and 95% confidence intervals (CIs) were calculated using the random model.
Findings: A total of 16 studies with 283 subjects and an age range between 15 and 30 years were included in the meta-analysis. The results of data analysis showed that acute exercise in hypoxia [SMD: 0.28, P = 0.06] and normoxia [SMD: 0.25, P = 0.13] did not lead to significant changes in VEGF immediately after exercise when compared to pre-exercise. However, exercise training in hypoxia condition leads to a significant increase in VEGF compared to exercise training in normoxia [SMD: 0.76, P = 0.001].
Conclusion: The results showed that acute exercise training in hypoxia and normoxia had no significant effects on VEGF. Chronic exercise training in hypoxia may lead to an increase in circulating VEGF values compared to exercise training in normoxia, which indicates the role of hypoxia in the beneficial effects of exercise training.

کلیدواژه‌ها [English]

  • Hypoxia
  • Exercise
  • VEGF
  1. Czuba M, Waskiewicz Z, Zajac A, Poprzecki S, Cholewa J, Roczniok R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med 2011; 10(1): 175-83.
  2. Friedmann B, Frese F, Menold E, Bärtsch P. Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners. Eur J Appl Physiol 2007; 101(1): 67-73.
  3. Shatilo VB, Korkushko OV, Ischuk VA, Downey HF, Serebrovskaya TV. Effects of intermittent hypoxia training on exercise performance, hemodynamics, and ventilation in healthy senior men. High Alt Med Biol 2008; 9(1): 43-52.
  4. Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports 2008; 18(Suppl 1): 38-49.
  5. Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. C Cell Struct Funct 2001; 26(1): 25-35.
  6. Karamysheva A. Mechanisms of angiogenesis. Biochemistry (Mosc) 2008; 73(7): 751-62.
  7. Bloor CM. Angiogenesis during exercise and training. Angiogenesis 2005; 8(3): 263-71.
  8. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol 2006; 291(3): H1290-H8.
  9. Amaral SL, Papanek PE, Greene AS. Angiotensin II and VEGF are involved in angiogenesis induced by short-term exercise training. Am J Physiol Heart Circ Physiol 2001; 281(3): H1163-H9.
  10. Pourvaghar MJ, Noorimofrad Sr, Khalafi M. Effect of acute exercise on vascular endothelial growth factor in adults: a systematic review with meta-analysis [in Persian]. Journal of Sport and Exercise Physiology 2023; 16(3): 87-100.
  11. Brinkmann C, Metten A, Scriba P, Tagarakis CV, Wahl P, Latsch J, et al. Hypoxia and hyperoxia affect serum angiogenic regulators in T2DM men during cycling. Int J Sports Med 2017; 38(02): 92-8.
  12. Hall B, Zebrowska A, Kaminski T, Stanula A, Robins A. Effects of Hypoxia during Continuous and Intermittent Exercise on Glycaemic Control and Selected Markers of Vascular Function in Type 1 Diabetes. Exp Clin Endocrinol Diabetes 2017; 126(4): 229-41.
  13. Kon M, Ohiwa N, Honda A, Matsubayashi T, Ikeda T, Akimoto T, et al. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol Rep 2014; 2(6): e12033.
  14. Kon M, Ikeda T, Homma T, Suzuki Y. Responses of angiogenic regulators to resistance exercise under systemic hypoxia. The J Strength Cond Res 2021; 35(2): 436-41.
  15. Nourshahi M, Taheri Chadorneshin H, Pirouz M. Effect of endurance training in hypoxia-normobaric and normal conditions on serum VEGF concentration, hemoglobin and blood hematocrit [in Persian]. Intern Med Today 2012; 18(3): 135-40.
  16. Saidian A, Alizadeh R, Moradi L. Effects of six weeks of aerobic training on the resting levels of VEGF, Body Composition and VO2max within normobaric hypoxic conditions in overweight/obesity women [in Persian]. Journal of Sport and Exercise Physiology 2021; 13(2): 3-11.
  17. Suhr F, Brixius K, de Marées M, Bölck B, Kleinöder H, Achtzehn S, et al. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol (1985) 2007; 103(2): 474-83.
  18. Suhr F, Knuth S, Achtzehn S, Mester J, de Marees M. Acute exhaustive exercise under normoxic and normobaric hypoxic conditions differentially regulates angiogenic biomarkers in humans. Medicina (Kaunas) 2021; 57(7): 727.
  19. Wang J-S, Lee M-Y, Lien H-Y, Weng T-P. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men. Int J Cardiol 2014; 170(3): 315-23.
  20. Żebrowska A, Jastrzębski D, Sadowska-Krępa E, Sikora M, Di Giulio C. Comparison of the effectiveness of high-intensity interval training in hypoxia and normoxia in healthy male volunteers: a pilot study. Biomed Res Int 2019; 2019: 7315714.
  21. Wiśniewska A, Płoszczyca K, Czuba M. Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. J Sports Med Phys Fitness 2020; 60(5): 677-84.
  22. Amirshaghaghi F, Hovanlo F, Noorshahi M, Shabani M. The effect of 8 weeks of repetitive speed training in hypoxia and normoxia Conditions on vascular endothelial growth factor in women elite swimmers. Journal of Practical Studies of Biosciences in Sport 2019; 7(13): 113-23.
  23. Mehri Alvar Y, Ravasi AA, Shabkhiz F, Erfani Adab F, Hasanvand S. The Effect of High Volume Endurance Exercise (HVE) during Normobaric Hypoxia and Normoxia on Angiogenesis Response in Inactive Men [in Persian]. Sport Physiology & Management Investigations 2015; 7(1): 23-38.
  24. Ravasi AA, Yadegari M, Choobineh S. Comparison of two types of physical activity on response serum VEGF-A, non-athletic men [in Persian]. Journal of Sport Biosciences 2014; 6(1): 41-56.
  25. Park H-Y, Lim K. Effects of hypoxic training versus normoxic training on exercise performance in competitive swimmers. Journal of Sports Science & Medicine. 2017;16(4):480.
  26. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135.
  27. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005; 5: 13.
  28. Wahl P, Schmidt A, deMarees M, Achtzehn S, Bloch W, Mester J. Responses of angiogenic growth factors to exercise, to hypoxia and to exercise under hypoxic conditions. Int J Sports Med 2013; 34(2): 95-100.
  29. Li S, Li S, Wang L, Quan H, Yu W, Li T, et al. The effect of blood flow restriction exercise on angiogenesis-related factors in skeletal muscle among healthy adults: A systematic review and meta-analysis. Front Physiol 2022; 13: 814965.
  30. Forsythe JA, Jiang B-H, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16(9): 4604-13.
  31. Dehne N, Kerkweg U, Otto T, Fandrey J. The HIF-1 response to simulated ischemia in mouse skeletal muscle cells neither enhances glycolysis nor prevents myotube cell death. Am J Physiol Regul Integr Comp Physiol 2007; 293(4): R1693-R701.