اثر مواجهه با پرفلئورواکتانویک اسید در دوران بارداری بر بیان فاکتور نوروتروفیکی مشتق از مغز (BDNF) در مغز نوزاد موش صحرایی

نوع مقاله : Original Article(s)

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده‌ی پزشکی، گروه علوم تشریحی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، دانشکده‌ی پزشکی، گروه علوم تشریحی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

3 دانشیار، دانشکده‌ی پزشکی، گروه علوم تشریحی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

10.48305/jims.v42.i779.0711

چکیده

مقاله پژوهشی




مقدمه: به دنبال مواجهه با عوامل توکسیک، تغییرات ساختاری و عملکردی در نورون‌ها بوجود می‌آید. این تغییرات می‌تواند منجر به اختلال در عملکرد سیستم عصبی نظیر اختلالات حسی- حرکتی شود. در مطالعه‌ی حاضر، اثرات مواجهه با پرفلئورواکتانوئیک اسید در دوران بارداری بر بیان فاکتور نوروتروفیکی مشتق از مغز در مغز نوزاد موش صحرایی مورد بررسی قرار گرفت.
روش‌ها: از مغز موش‌های تازه متولد شده نژاد Wistar که در پنج گروه شامل گروه‌های شاهد، شم و سه گروه دریافت‌کننده‌ی PFOA تقسیم شده بودند، استفاده شد. در گروه‌های PFOA، این ترکیب با دوز 1، 5 و 10 میلی‌گرم بصورت روزانه گاواژ شده بود. مغز موش‌های نوزاد، بیست روز بعد از تولد خارج شده و سطح فاکتور نوروتروفیکی مشتق از مغز با استفاده از روش‌های ELISA و Real Time PCR در این نمونه‌ها ارزیابی گردید.
یافته‌ها: نتایج نشان داد که میانگین بیان ژن BDNF در گروه‌های دریافت‌کننده‌ی PFOA نسبت به سایر گروه‌ها افزایش معنی‌داری داشت (0/001 ≥ P). همچنین میزان بیان پروتئین BDNF در گروه‌های دریافت‌کننده‌ی دوزهای 5 و 10 میلی‌گرم PFOA نسبت به گروه‌های شاهد و شم افزایش معنی‌داری داشت (0/05 ≥ P).
نتیجه‌گیری: نتایج این مطالعه نشان داد که مواجهه با آلاینده‌ای طبیعی نظیر PFOA می‌تواند منجر به افزایش بیان BDNF شود و این افزایش احتمالاً بدلیل پیشگیری از اثرات مخرب PFOA بر تکامل سیستم عصبی می‌باشد. لذا پیشنهاد می‌شود در دوران بارداری حتی‌المقدور از مواجهه با منابع محتوی PFOA اجتناب گردد.

تازه های تحقیق

زین العابدین  شریفیان دستجردی: Google Scholar, PubMed 

ناظم قاسمی: Google Scholar, PubMed 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Exposure to Perfluorooctanoic Acid During Pregnancy on the Expression of Brain-Derived Neurotrophic Factor (BDNF) in the Newborn Rat Brain

نویسندگان [English]

  • Satar Doghi 1
  • Zeinolabedin Sharifian Dastjerdi 2
  • Nazem Ghasemi 3
1 MSc Student, Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
3 Associate Professor, Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background: Following exposure to toxic agents, structural and functional changes occur in neurons. These changes can lead to the nervous system dysfunction, such as sensorimotor disorders. In the current study, we investigated how exposure to perfluorooctanoic acid during pregnancy affects the expression of brain-derived neurotrophic factors in the brains of newborn rats.
Methods: The brains of newborn Wistar rats which divided into five groups include control, sham and three PFOA receiving groups were used. In the PFOA groups, this compound was gavage with a dose of 1, 5 and 10 mg daily. The brains of newborn mice were removed 20 days after birth and the level of neurotrophic factors derived from these samples was evaluated using ELISA and Real Time PCR methods.
Findings: The results showed that the mean expression of the BDNF gene significantly increased in the PFOA-receiving groups compared to other groups (P ≤ 0.001). Also, there was a significant increase in BDNF protein expression in the groups that received doses of 5 and 10 mg of PFOA compared to the control and sham groups (P ≤ 0.05).
Conclusion: The results of this study showed that exposure to a natural pollutant such as PFOA can lead to an increase in BDNF expression, and this increase is probably due to the prevention of the destructive effects of PFOA on the development of the nervous system. Therefore, it is recommended to minimize exposure to PFOA-containing sources as much as possible during pregnancy.

کلیدواژه‌ها [English]

  • Brain-derived neurotrophic factor
  • Perfluorooctanoic acid
  • Nerve growth factors
  1. Ghosouri S, Bakhtiari M, Mitra S, Ghasemi N. Valproic acid effects on human adipose-derived stem cell differentiation into oligodendrocytes and improved remyelination in a mouse model of Multiple Sclerosis. Int J Dev Biol 2023; 67(3): 101-8.
  2. Ghosouri S, Soleimani M, Bakhtiari M, Ghasemi N. Evaluation of in vivo lithium chloride effects as a GSK3-β inhibitor on human adipose derived stem cells differentiation into oligodendrocytes and re-myelination in an animal model of multiple sclerosis. Mol Biol Rep 2023; 50(2): 1617-25.
  3. Sungur Ş. Dietary exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS): a review of recent literature. Toxin Reviews 2018; 37(2): 106-16.
  4. Harrad S, Wemken N, Drage DS, Abdallah MA, Coggins AM. Perfluoroalkyl substances in drinking water, indoor air and dust from Ireland: implications for human exposure. Environ Sci Technol 2019; 53(22): 13449-57.
  5. Teaf CM, Garber MM, Covert DJ, Tuovila BJ. Perfluorooctanoic acid (PFOA): environmental sources, chemistry, toxicology, and potential risks. Soil and Sediment Contamination: An International Journal 2019; 28(3): 258-73.
  6. Jian J-M, Guo Y, Zeng L, Liang-Ying L, Lu X, Wang F, et al. Global distribution of perfluorochemicals (PFCs) in potential human exposure source–a review. Environment international 2017; 108: 51-62.
  7. Loccisano AE, Longnecker MP, Campbell Jr JL, Andersen ME, Clewell III HJ. Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages. J Toxicol Environ Health A 2013; 76(1): 25-57.
  8. Brede E, Wilhelm M, Göen T, Müller J, Rauchfuss K, Kraft M, et al. Two-year follow-up biomonitoring pilot study of residents’ and controls’ PFC plasma levels after PFOA reduction in public water system in Arnsberg, Germany. Int J Hyg Environ Health 2010; 213(3): 217-23.
  9. Seals R, Bartell SM, Steenland K. Accumulation and clearance of perfluorooctanoic acid (PFOA) in current and former residents of an exposed community. Environ Health Perspect 2010; 119(1): 119-24.
  10. Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environ Int 2017; 99: 43-54.
  11. Waheed Z, Choudhary J, Jatala FH, Fatimah, Noor A, Zerr I, Zafar S. The role of tau proteoforms in health and disease. Mol Neurobiol 2023; 60(9): 5155-66.
  12. Yuan Z, Zhang J, Zhao B, Miao Z, Wu X. Effects of perfluorooctanoic acid on neural genes expression and neuronal morphology in the planarian Dugesia japonica. Chemistry and Ecology 2016; 32(6): 575-82.
  13. Coppedè F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res 2015; 776: 84-97.
  14. Prautsch KM, Schmidt A, Paradiso V, Schaefer DJ, Guzman R, Kalbermatten DF, et al. Modulation of human adipose stem cells’ neurotrophic capacity using a variety of growth factors for neural tissue engineering applications: axonal growth, transcriptional, and phosphoproteomic analyses in vitro. Cells 2020; 9(9): 1939.
  15. Rajkowska G, Miguel-Hidalgo J. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 2007; 6(3): 219-33.
  16. Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, LeBron C, Witter FR, et al. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics 2010; 5(6): 539-46.
  17. Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, et all. Low‐level perfluorooctanoic acid enhances 3 T3‐L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation. J Appl Toxicol 2018; 38(3): 398-407.
  18. Harris MH, Oken E, Rifas-Shiman SL, Calafat AM, Ye X, Bellinger DC, Webster TF, et al. Prenatal and childhood exposure to per-and polyfluoroalkyl substances (PFASs) and child cognition. Environ Int 2018; 115: 358-69.
  19. Vuong AM, Yolton K, Xie C, Dietrich KN, Braun JM, Webster GM, et al. Prenatal and childhood exposure to poly-and perfluoroalkyl substances (PFAS) and cognitive development in children at age 8 years. Environ Res 2019; 172: 242-8.
  20. Liew Z, Ritz B, Bach CC, Asarnow RF, Bech BH, Nohr EA, et al. Prenatal exposure to perfluoroalkyl substances and IQ scores at age 5; a study in the Danish National Birth Cohort. Environ Health Perspect 2018; 126(6): 067004.
  21. Wang Y, Rogan WJ, Chen HY, Chen PC, Su PH, Chen HY, et al. Prenatal exposure to perfluroalkyl substances and children's IQ: The Taiwan maternal and infant cohort study. Int J Hyg Environ Health 2015; 218(7): 639-44.
  22. Luo J, Xiao J, Gao Y, Ramlau-Hansen CH, Toft G, Li J, et al. Prenatal exposure to perfluoroalkyl substances and behavioral difficulties in childhood at 7 and 11 years. Environ Res 2020; 191: 110111.
  23. Vuong AM, Yolton K, Wang Z, Xie C, Webster GM, Ye X, et al. Childhood perfluoroalkyl substance exposure and executive function in children at 8 years. Environ Int 2018; 119: 212-9.
  24. Yu G, Luo F, Nian M, Li S, Liu B, Feng L, et al. Exposure to Perfluoroalkyl substances during pregnancy and fetal BDNF level: a prospective cohort study. Front Endocrinol (Lausanne) 2021; 12: 653095.
  25. Annunziato KM, Jantzen CE, Gronske MC, Cooper KR. Subtle morphometric, behavioral and gene expression effects in larval zebrafish exposed to PFHxA, PFHxS and 6: 2 FTOH. Aquat Toxicol 2019; 208: 126-37.
  26. Behr AC, Plinsch C, Braeuning A, Buhrke T. Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol In Vitro 2020; 62: 104700.
  27. Fleisch AF, Rifas-Shiman SL, Mora AM, Calafat AM, Ye X, Luttmann-Gibson H, Gillman MW, et al. Early-life exposure to perfluoroalkyl substances and childhood metabolic function. Environ Health Perspect 2017; 125(3): 481-7.
  28. Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 2008; 13: 1813.
  29. Bernardo A, Levi G, Minghetti L. Role of the peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) and its natural ligand 15‐deoxy‐Δ12, 14‐prostaglandin J2 in the regulation of microglial functions. Eur J Neurosci 2000; 12(7): 2215-23.