تشخیص نقاط شاخص سیگنال الکتریکی قلب به صورت بلادرنگ

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی پزشکی، دانشکده‌ی فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

2 استادیار، گروه مهندسی پزشکی، دانشکده‌ی فنی و مهندسی، دانشگاه اصفهان، اصفهان، ایران

3 دانشجوی کارشناسی ارشد، گروه مهندسی پزشکی، دانشکده‌ی برق و کامپیوتر، دانشگاه تهران، تهران، ایران

4 مهندس کامپیوتر- نرم‌افزار، شرکت کاوشگران طب خوارزمی، تهران، ایران

چکیده

مقدمه: در مواردی که برای تشخیص بیماری‌های قلبی، به صورت طولانی سیگنال الکتریکی قلبی ثبت می‌شود، به‌ کارگیری نرم‌افزارهایی برای تحلیل هوشمند سیگنال ضروری است. برای اینکه این نرم‌افزارها بتوانند در تحلیل آریتمی‌ها مورد اعتماد باشند، باید از الگوریتم‌هایی بهره گیرند که توانایی تشخیص دقیق نقاط شاخص سیگنال الکتریکی قلب را با دقت بالا و درکمترین زمان ممکن داشته باشند.روش‌ها: در الگوریتم پیشنهادی در این تحقیق، با به کارگیری روش مشتق‌گیری و بررسی عبورهای متوالی سیگنال مشتق از حد آستانه، نقاط ابتدایی و انتهایی کمپلکس QRS جست‌وجو ‌شدند. پس از آن، با استفاده از اطلاعات جمع‌آوری شده‌، محدودیت‌های فواصل و دامنه‌ها و شکل موج‌ها در سیگنال الکتریکی قلب در آریتمی‌های مختلف، آستانه‌های تطبیقی و الگوریتم جست‌وجوی پس‌رو، نقاط بحرانی با دقت بالا و به صورت بلادرنگ تشخیص داده شدند. در ادامه و به منظور استفاده در تجهیزات پزشکی از راه دور، این الگوریتم بر روی پردازنده‌ی ARM پیاده‌سازی شد. این پردازنده در مقایسه با موارد مشابه، به دلیل سرعت بالا و مصرف کم انرژی، گزینه‌ی مناسبی برای به کارگیری در تجهیزاتی است که نیاز به پردازش سریع و دقیق بر روی دستگاه دارند.یافته‌ها: صحت این الگوریتم در تشخیص کمپلکس QRS بر روی داده‌های موجود در سایت MIT-BIH، 97/18% بود.نتیجه‌گیری: الگوریتم پیشنهادی سریع و به اندازه‌ی کافی قابل اطمینان است و می‌تواند در نرم‌افزارهای زمان حقیقی برای تشخیص آریتمی‌های قلبی با دقت بالا به کار گرفته شود.

عنوان مقاله [English]

Real-Time Detection of Fiducial Points on the Cardiac Electrical Signal

نویسندگان [English]

  • Amir Hossein Keyvanpour 1
  • Mohammad Reza Yazdchi 2
  • Reihaneh Sadat Daneshmand 3
  • Omid Khoshniat Aram 4
1 MSc Student, Department of Biomedical Engineering, School of Engineering, University of Isfahan, Isfahan, Iran
2 Assistant Professor, Department of Biomedical Engineering, School of Engineering, University of Isfahan, Isfahan, Iran
3 MSc Student, Department of Bioelectrical Engineering, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
4 Computer Engineer, Kavoshgaran Teb Kharazmi Corporation, Tehran, Iran
چکیده [English]

Background: Using long-term electrocardiogram (ECG) recorders for diagnosing cardiac diseases is only feasible by using automatic algorithms. In order for algorithms to have such reliability, they should be able to precisely detect the critical points of the ECG signal.Methods: This paper introduced a gradient-based algorithm to detect Q, R, S, P, and T points. This algorithm detects QRS-onset and QRS-offset, which are respectively the first and the last parts of QRS complex, by counting the number of threshold crossings of the slope signals. Fiducial points can then be found considering the obtained information about limitations of intervals, amplitudes and shape of the components, adaptive thresholds, and search-back algorithm. To use this algorithm in real-time telemonitoring, it is implemented on an ARM microprocessor which is fast and consumes a low amount of energy.Findings: The algorithm was implemented on MIT-BIH ECG database. The accuracy of R-point detection was 97.18% in this database.Conclusion: Since the developed algorithm is knowledge-based and sufficiently fast, it can be used in real-time software or ARM microprocessors to detect arrhythmias from ECG signals with considerably high performance.

  1. Ministry of Health and Medical Education. Cardiovascular disease is the commonest cause of death in the country. [Online]. 2010. Available from: URL:http://www.behdasht.gov.ir/index.aspx?siteid=1&pageid=24979&newsview=12090.
  2. Jones SHA. ECG Success: Exercises in ECG interpretation. 1st ed. Philadelphia, PA: F.A. Davis Company; 2007.
  3. ECG- Rate with Irregular Rhythm. [Online]. Available from: URL:http://medicalpblukm.blogspot.nl/2010/10/ecg-rate-with-irregular-rhythm.html.
  4. Besio WG, K Kota AK. Laplacian ECG moment of activation detection algorithm during pacing. Conf Proc IEEE Eng Med Biol Soc 2004; 2: 948-51.
  5. Faezipour M, Tiwari TM, Saeed A, Nourani M, Tamil LS. Wavelet-Based Denoising and Beat Detection of ECG Signal. Proceedings of the IEEE-NIH Life Science Systems and Applications Workshop; 2009 Apr 9-10; Bethesda, Maryland.
  6. Zhang F, Lian Y. Wavelet and Hilbert transforms based QRS complexes detection algorithm for wearable ECG devices in wireless Body Sensor Networks. Proceedings of the International Biomedical Circuits and Systems Conference; 2009 Nov 26-28; Kent Ridge: Singapore.
  7. Shyu LY, Wu YH, Hu W. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans Biomed Eng 2004; 51(7): 1269-73.
  8. Huang B, Wang Y. Detecting QRS Complexes of Two-Channel ECG Signals by Using Combined Wavelet Entropy. Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering; 2009; Beijing, China.
  9. Arzeno NM, Poon CS, Deng ZD. Quantitative analysis of QRS detection algorithms based on the first derivative of the ECG. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 1788-91.
  10. Tan KF, Chan KL, Choi K. Detection of the QRS complex, P wave and T wave in electrocardiogram. Proceedings of the 1st International Conference on Advances in Medical Signal and Information Processing; 2000 Sept 4-6; Bristol, UK.
  11. Pan J, Tompkins WJ. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering 1985; 32(3): 230-6.
  12. .Hashemi SM. Setup A/D convertorin AT71SAM256. Journal of Microcontrollers 2009; 3: 22-4.
  13. MIT-BIH arrhythmia database. [Online]. Available from: URL: www.Physionet.org/physiobank/database/mitdb/