عوامل ژنتیکی ناباروری در مردان

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

2 استادیار، مرکز تحقیقات بیماری‌های ارثی کودکان، گروه ژنتیک و بیولوژی مولکولی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

ناباروری یکی از شایع‌ترین مشکلات بهداشتی جهان است. این مشکل حدود 15 درصد زوج‌ها را درگیر می‌کند. در حدود نیمی از این موارد یک عامل مردانه دخیل است. سبب‌شناسی ناباروری در مردان به صورت چند عاملی است و بسیاری از عوامل ژنتیکی و محیطی در بروز آن دخیل هستند. عوامل ژنتیکی شامل ناهنجاری‌های کروموزومی و جهش‌های تک ژنی مسؤول حدود 10 تا 15 درصد عوامل در مردان نابارور است. در این مقاله ما به جنبه‌ها‌ی ژنتیکی (ناهنجاری کروموزومی، تک ژنی و پلی‌مورفیسم ژن‌های دخیل)، نقش جهش‌های میتوکندریایی، ارتباط miRNA با ناباروری و گزارش ژن‌های جدید در ناباروری در سال‌های اخیر پرداختیم. 

کلیدواژه‌ها


عنوان مقاله [English]

Genetics Aspects of Male Infertility

نویسندگان [English]

  • Arezoo Karamzade 1
  • Hadi Mirzapour 1
  • Majid Kheirollahi 2
1 MSc Student, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
2 Assistant Professor, Pediatric Inherited Diseases Research Center AND Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Infertility is one of the most common reproductive disorders occurring in approximately 15% of the couples. Male factor accounts for about half of these cases. The causes of reproductive defects in infertile men are multifactorial and many environmental and genetic factors affect male infertility. Genetics factors cause an account for 10-15% of male infertility, including chromosomal aberrations and single gene mutations. The current review will focus on genetics aspect of male infertility, including chromosomal disorder, single gene mutation and polymorphism, role of mitochondrial DNA and microRNA. We also take a look at last reported new genes causes of infertility. 

کلیدواژه‌ها [English]

  • Infertility
  • Spermatogenesis
  • Chromosome abnormality
  • Epigenetics
  1. Therman E, Susman M. Human chromosomes: structure, behavior and effects. 3rd ed. New York, NY: Springer; 1992.
  2. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online 2007; 14(6): 734-45.
  3. Carrell DT, De JC, Lamb DJ. The genetics of male infertility: a field of study whose time is now. Arch Androl 2006; 52(4): 269-74.
  4. Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, Garolla A, et al. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metab 2007; 92(3): 762-70.
  5. Emery BR, Carrell DT. The effect of epigenetic sperm abnormalities on early embryogenesis. Asian J Androl 2006; 8(2): 131-42.
  6. Palermo GD, Colombero LT, Hariprashad JJ, Schlegel PN, Rosenwaks Z. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI. Hum Reprod 2002; 17(3): 570-5.
  7. Mateizel I, Verheyen G, Van AE, Tournaye H, Liebaers I, Van SA. FISH analysis of chromosome X, Y and 18 abnormalities in testicular sperm from azoospermic patients. Hum Reprod 2002; 17(9): 2249-57.
  8. Carrell DT. Contributions of spermatozoa to embryogenesis: assays to evaluate their genetic and epigenetic fitness. Reprod Biomed Online 2008; 16(4): 474-84.
  9. Foresta C, Galeazzi C, Bettella A, Stella M, Scandellari C. High incidence of sperm sex chromosomes aneuploidies in two patients with Klinefelter's syndrome. J Clin Endocrinol Metab 1998; 83(1): 203-5.
  10. Ron-El R, Strassburger D, Gelman-Kohan S, Friedler S, Raziel A, Appelman Z. A 47,XXY fetus conceived after ICSI of spermatozoa from a patient with non-mosaic Klinefelter's syndrome: case report. Hum Reprod 2000; 15(8): 1804-6.
  11. Reubinoff BE, Abeliovich D, Werner M, Schenker JG, Safran A, Lewin A. A birth in non-mosaic Klinefelter's syndrome after testicular fine needle aspiration, intracytoplasmic sperm injection and preimplantation genetic diagnosis. Hum Reprod 1998; 13(7): 1887-92.
  12. Gianaroli L, Magli MC, Ferraretti AP, Munne S, Balicchia B, Escudero T, et al. Possible interchromosomal effect in embryos generated by gametes from translocation carriers. Hum Reprod 2002; 17(12): 3201-7.
  13. Chandley AC, Edmond P, Christie S, Gowans L, Fletcher J, Frackiewicz A, et al. Cytogenetics and infertility in man. I. Karyotype and seminal analysis: results of a five-year survey of men attending a subfertility clinic. Ann Hum Genet 1975; 39(2): 231-54.
  14. Elliott DJ, Cooke HJ. The molecular genetics of male infertility. Bioessays 1997; 19(9): 801-9.
  15. De BM, Dao TN. Cytogenetic studies in male infertility: a review. Hum Reprod 1991; 6(2): 245-50.
  16. Georgiou I, Syrrou M, Pardalidis N, Karakitsios K, Mantzavinos T, Giotitsas N, et al. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J Androl 2006; 8(6): 643-73.
  17. Schlegel PN. Causes of azoospermia and their management. Reprod Fertil Dev 2004; 16(5): 561-72.
  18. Katagiri Y, Neri QV, Takeuchi T, Schlegel PN, Megid WA, Kent-First M, et al. Y chromosome assessment and its implications for the development of ICSI children. Reprod Biomed Online 2004; 8(3): 307-18.
  19. Krausz C, Forti G, McElreavey K. The Y chromosome and male fertility and infertility. Int J Androl 2003; 26(2): 70-5.
  20. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003; 423(6942): 825-37.
  21. Vogt PH. Azoospermia factor (AZF) in Yq11: towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod Biomed Online 2005; 10(1): 81-93.
  22. Nuti F, Krausz C. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online 2008; 16(4): 504-13.
  23. Lardone MC, Parodi DA, Valdevenito R, Ebensperger M, Piottante A, Madariaga M, et al. Quantification of DDX3Y, RBMY1, DAZ and TSPY mRNAs in testes of patients with severe impairment of spermatogenesis. Mol Hum Reprod 2007; 13(10): 705-12.
  24. Tyler-Smith C. An evolutionary perspective on Y-chromosomal variation and male infertility. Int J Androl 2008; 31(4): 376-82.
  25. Krausz C, Degl'Innocenti S, Nuti F, Morelli A, Felici F, Sansone M, et al. Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet 2006; 15(18): 2673-81.
  26. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 1997; 15(2): 205-6.
  27. Lavery R, Glennon M, Houghton J, Nolan A, Egan D, Maher M. Investigation of DAZ and RBMY1 gene expression in human testis by quantitative real-time PCR. Arch Androl 2007; 53(2): 71-3.
  28. Kuroda-Kawaguchi T, Skaletsky H, Brown LG, Minx PJ, Cordum HS, Waterston RH, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 2001; 29(3): 279-86.
  29. Bateson P, Barker D, Clutton-Brock T, Deb D, D'Udine B, Foley RA, et al. Developmental plasticity and human health. Nature 2004; 430(6998): 419-21.
  30. Reynolds N, Cooke HJ. Role of the DAZ genes in male fertility. Reprod Biomed Online 2005; 10(1): 72-80.
  31. Schnieders F, Dork T, Arnemann J, Vogel T, Werner M, Schmidtke J. Testis-specific protein, Y-encoded (TSPY) expression in testicular tissues. Hum Mol Genet 1996; 5(11): 1801-7.
  32. Guarducci E, Nuti F, Becherini L, Rotondi M, Balercia G, Forti G, et al. Estrogen receptor alpha promoter polymorphism: stronger estrogen action is coupled with lower sperm count. Hum Reprod 2006; 21(4): 994-1001.
  33. Lazaros L, Xita N, Kaponis A, Zikopoulos K, Sofikitis N, Georgiou I. Evidence for association of sex hormone-binding globulin and androgen receptor genes with semen quality. Andrologia 2008; 40(3): 186-91.
  34. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2005; 33(Database issue): D54-D58.
  35. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10(1): 111-3.
  36. Park JH, Lee HC, Jeong YM, Chung TG, Kim HJ, Kim NK, et al. MTHFR C677T polymorphism associates with unexplained infertile male factors. J Assist Reprod Genet 2005; 22(9-10): 361-8.
  37. Singh K, Singh SK, Sah R, Singh I, Raman R. Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int J Androl 2005; 28(2): 115-9.
  38. De GK, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 2004; 101(5): 1327-32.
  39. Ferlin A, Vinanzi C, Garolla A, Selice R, Zuccarello D, Cazzadore C, et al. Male infertility and androgen receptor gene mutations: clinical features and identification of seven novel mutations. Clin Endocrinol (Oxf) 2006; 65(5): 606-10.
  40. Stouffs K, Lissens W, Tournaye H, Van SA, Liebaers I. Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet 2005; 13(3): 336-40.
  41. Bhagavath B, Layman LC. The genetics of hypogonadotropic hypogonadism. Semin Reprod Med 2007; 25(4): 272-86.
  42. Burris AS, Rodbard HW, Winters SJ, Sherins RJ. Gonadotropin therapy in men with isolated hypogonadotropic hypogonadism: the response to human chorionic gonadotropin is predicted by initial testicular size. J Clin Endocrinol Metab 1988; 66(6): 1144-51.
  43. Downer J. Backgrounder: epigenetics and imprinted genes [Online]. 2002 Nov 15 [cited Apr 2009]; Available from: URL: http://www.hopkinsmedicine.org/press/2002/november/epigenetics.htm.
  44. Rousseaux S, Reynoird N, Escoffier E, Thevenon J, Caron C, Khochbin S. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 2008; 16(4): 492-503.
  45. Aoki VW, Carrell DT. Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl 2003; 5(4): 315-24.
  46. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 2007; 13(3): 313-27.
  47. Nanassy L, Carrell DT. Paternal effects on early embryogenesis. J Exp Clin Assist Reprod 2008; 5: 2.
  48. Adham IM, Nayernia K, Burkhardt-Gottges E, Topaloglu O, Dixkens C, Holstein AF, et al. Teratozoospermia in mice lacking the transition protein 2 (Tnp2). Mol Hum Reprod 2001; 7(6): 513-20.
  49. Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A 2000; 97(9): 4683-8.
  50. Lee K, Haugen HS, Clegg CH, Braun RE. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci U S A 1995; 92(26): 12451-5.
  51. Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 2007; 19(3): 266-72.
  52. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002; 117(1-2): 15-23.
  53. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 2007; 16(21): 2542-51.
  54. Zalenskaya IA, Zalensky AO. Telomeres in mammalian male germline cells. Int Rev Cytol 2002; 218: 37-67.
  55. Hemann MT, Rudolph KL, Strong MA, DePinho RA, Chin L, Greider CW. Telomere dysfunction triggers developmentally regulated germ cell apoptosis. Mol Biol Cell 2001; 12(7): 2023-30.
  56. Liu L, Blasco M, Trimarchi J, Keefe D. An essential role for functional telomeres in mouse germ cells during fertilization and early development. Dev Biol 2002; 249(1): 74-84.
  57. Fujisawa M, Tanaka H, Tatsumi N, Okada H, Arakawa S, Kamidono S. Telomerase activity in the testis of infertile patients with selected causes. Hum Reprod 1998; 13(6): 1476-9.
  58. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, Perez-Martos A, Montoya J, Alvarez E, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet 2000; 67(3): 682-96.
  59. Mueller B, Daling J. Epidemiology of infertility. Extent of the problem-risk factors and associated social changes. In: Soules MR, editor. Controversies in reproductive endocrinology and infertility. London, UK; Chapman & Hall; 1989. p. 1-13.
  60. Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, et al. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 2001; 276(42): 39206-12.
  61. Marchington DR, Scott Brown MS, Lamb VK, van Golde RJ, Kremer JA, Tuerlings JH, et al. No evidence for paternal mtDNA transmission to offspring or extra-embryonic tissues after ICSI. Mol Hum Reprod 2002; 8(11): 1046-9.
  62. Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 2001; 7(5): 425-9.
  63. Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E, Brennecke J, et al. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev 2008; 22(1): 8-13.
  64. Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol 2007; 311(2): 592-602.
  65. Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A 2006; 103(8): 2647-52.
  66. Kotaja N, Sassone-Corsi P. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 2007; 8(1): 85-90.
  67. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 2005; 73(3): 427-33.
  68. Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 2008; 3(3): e1738.
  69. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, et al. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 2009; 7: 13.
  70. Koscinski I, Elinati E, Fossard C, Redin C, Muller J, Velez dlC, et al. DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet 2011; 88(3): 344-50.
  71. Pastuszak AW, Jorgez CJ, Lipshultz LI, Lamb DJ. GLUT3 and Caspr5-novel genetic factors in male infertility. Fertility and Sterility 2012; 98(3): S1.
  72. Bashamboo A, Ferraz-de-Souza B, Lourenco D, Lin L, Sebire NJ, Montjean D, et al. Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am J Hum Genet 2010; 87(4): 505-12.
  73. Loh BJ, Cullen CF, Vogt N, Ohkura H. The conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in Drosophila oocytes. J Cell Sci 2012; 125(Pt 19): 4457-62.