بررسی فراوانی آنزیم‌های متالوبتالاکتاماز blaVIM، blaIPM و blaNDM در ایزوله‌های سودوموناس آئروژینوزای جدا شده از زخم‌های سوختگی در بیمارستان سوانح سوختگی شهید صدوقی یزد

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه میکروب شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران

2 استادیار، گروه انگل شناسی و قارچ شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران

3 استادیار، گروه میکروب شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران

چکیده

مقدمه: سودوموناس آئروژینوزا نقش عمده‌ای در ایجاد عفونت‌های فرصت طلب و شدید در بیماران سوختگی دارد.آنزیم‌های متالوبتالاکتاماز توانایی غیر فعال‌ سازی اغلب آنتی بیوتیک‌های بتالاکتام از جمله کارباپنم را دارند و معضلی جدید در درمان بیماران می‌باشند. هدف مطالعه‌ی حاضر، بررسی شیوع آنزیم‌های متالوبتالاکتاماز blaVIM، blaIPM و blaNDM در سویه‌های سودوموناس آئروژینوزای جدا شده از زخم‌های سوختگی در شهر یزد بود.روش‌ها: در این مطالعه‌ی توصیفی- مقطعی، تعداد 180 نمونه زخم سوختگی از بیماران بستری در بیمارستان سوانح سوختگی اخذ شد و سپس در آزمایشگاه میکروب شناسی دانشکده‌ی پزشکی دانشگاه علوم پزشکی شهید صدوقی یزد، کشت داده شد وکلنی‌های مشکوک با روش‌های بیوشیمیایی معمول به عنوان سودوموناس آئروژینوزا تعیین هویت گردید. سنجش حساسیت آنتی بیوتیکی از روش Kirby-Bauer مطابق با استانداردهای CLSI (Clinical and Laboratory Standards Institute)، برای تعیین MIC (Minimum inhibitory concentration) ایمیپنم و مروپنم از روش Etest (Epsilometer test)، برای تشخیص متالوبتالاکتاماز از روش فنوتیپی Etest MBL (Etest metallo-beta-lactamase) و جهت تعیین blaIPM، blaVIM و blaNDM از روش PCR (Polymerase chain reaction) با استفاده از پرایمرهای اختصاصی استفاده شد.یافته‌ها: از 180 نمونه زخم سوختگی کشت داده شده، 54 ایزوله (30 درصد) به عنوان سودوموناس آئروژینوزا تعیین هویت شد. به ترتیب 70 درصد، 66 درصد و 74 درصد ایزوله‌های سودوموناس آئروژینوزا به ارتاپنم، مروپنم و ایمیپنم مقاوم بودند. همچنین 35 ایزوله (64 درصد) و 40 ایزوله (74 درصد) به ترتیب 16 < 6MIC نسبت به مروپنم و ایمیپنم داشتند و 5/29 درصد دارای آنزیم‌های متالوبتالاکتاماز بودند. 9 ایزوله (6/16 درصد) و 5 ایزوله (2/9 درصد) از 54 ایزوله‌ی مورد بررسی، دارای blaIPM و blaVIM بودند و 2 ایزوله (7/3 درصد) همزمان دارای blaIPM و blaVIM بودند.نتیجه‌گیری: با توجه به نتایج، شیوع آنزیم‌های MBL (Metallo-beta-lactamase) و مقاومت آنتی بیوتیکی در بیماران بستری بالا است و نیاز است که مانند سنجش حساسیت آنتی بیوتیکی،مقاومت آنتی بیوتیکی نیز قبل از تجویز آنتی بیوتیک‌ها انجام شود.

کلیدواژه‌ها


عنوان مقاله [English]

Prevalence of blaVIM, blaIPM and blaNDM Metallo-Beta-Lactamases Enzymes in Pseudomonas Aeruginosa Isolated from Burn Wounds in Shahid Sadoughi Burn Hospital, Yazd, Iran

نویسندگان [English]

  • Fatemeh Akhavan-Tafti 1
  • Gilda Eslami 2
  • Hengameh Zandi 3
  • Seyed-Morteza Mousavi 1
  • Mohadeseh Zarei 1
1 MSc Student, Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2 Assistant Professor, Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3 Assistant Professor, Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
چکیده [English]

Background: Pseudomonas aeruginosa is a Gram-negative bacterium that plays a major role in development of opportunistic and severe infections in burn patients. Occurrence of enzymes capable of inactivating all beta-lactams including carbapenems is new problem in treatment of patients. The objective of this study was to investigate the prevalence of Metallo-Beta-Lactamases (MBL) enzymes blaVIM, blaIPM and blaNDM in Pseudomonas aeruginosa strains isolated from burn wounds in Yazd city, Iran.Methods: In this cross-sectional study, 180 burn wound-specimens were collected from burn-hospital belonged to Shahid Sadoughi University of Medical Sciences in Yazd during one year and were cultured at microbiology laboratory of School of Medicine of this university. Suspected colonies were identified by conventional biochemical methods such as utilization of sugars, motility, and oxidase production. Sugar utilization in the Oxidation-Fermentation medium (OF), growth at 42°C and pigment production tests were performed for oxidase positive and non-fermentative colonies on Triple Sugar Iron (TSI) test. Antibiotic susceptibility was determined by Kirby-Bauer methods according to the Clinical and Laboratory Standards Institute (CLSI) standards. Etest metallo-beta-lactamase (Etest MBL) method was used for phenotypic detection of MBL and blaVIM, blaIPM and blaNDM were determined by polymerase chain reaction (PCR) method using specific primers.Findings: Out of 180 burn wound specimens, 54 (30%) was identified as Pseudomonas aeroginosa. Out of 54 isolates, 70%, 66% and 74% were resistance to ertapenem, meropenem and imipenem respectively; 64% and 74% of isolates were resistant to meropenem and imipenem respectively. MBL enzymes were detected in 29.5% of isolates. Nine isolates (16.6%) and 5 isolates (9.2% ) had blaVIM and blaIPM respectively and 2(3.7%) isolates had blaVIM and blaIPM simultaneously. None of the isolates had blaNDM.Conclusion: The results of this study show that the prevalence of MBL enzymes and antibiotic resistance in burn patients is high and it is necessary to determine susceptibility testing before treatment.

کلیدواژه‌ها [English]

  • Metallo-Beta-Lactamases (MBL) Enzymes
  • Pseudomonas aeruginosa
  • Antibiotic Resistance
  1. Levy SB. The challenge of antibiotic resistance. Sci Am 1998; 278(3): 46-53.
  2. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999; 43(6): 1379-82.
  3. Troillet N, Samore MH, Carmeli Y. Imipenem-resistant Pseudomonas aeruginosa: risk factors and antibiotic susceptibility patterns. Clin Infect Dis 1997; 25(5): 1094-8.
  4. Estahbanati HK, Kashani PP, Ghanaatpisheh F. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics. Burns 2002; 28(4): 340-8.
  5. Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993; 175(22): 7363-72.
  6. Sung JY, Cho HH, Kwon KC, Koo SH. Chromosomal Mutations in oprD, gyrA, and parC in Carbapenem Resistant Pseudomonas aeruginosa. Korean J Clin Microbiol 2011; 14(4): 131-7.
  7. Shojapour M, Shariati L, Karimi A, Zamanzad B. Prevalence of TEM-1 type beta-lactmase genes in Pseudomonas aeruginosa strains isolated from burn infections using Duplex PCR in Shahrekord. Arak University of Medical Sciences Journal 2011; 14(1): 55-61. [In Persian].
  8. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50(5): 1633-41.
  9. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006; 50(1): 43-8.
  10. Hall BG, Barlow M. Revised Ambler classification of {beta}-lactamases. J Antimicrob Chemother 2005; 55(6): 1050-1.
  11. Kalantar D, Mansouri SH, Razavi M. Emergence of imipenem resistance and presence of metallo-?-lactamases enzymes in multi drug resistant gram negative bacilli isolated from clinical samples in Kerman, 2007-2008. J Kerman Univ Med Sci 2010; 17(3): 208-14. [In Persian].
  12. Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States. Antimicrob Agents Chemother 2005; 49(8): 3538-40.
  13. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18(2): 306-25.
  14. Samuelsen O, Buaro L, Giske CG, Simonsen GS, Aasnaes B, Sundsfjord A. Evaluation of phenotypic tests for the detection of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a low prevalence country. J Antimicrob Chemother 2008; 61(4): 827-30.
  15. Mirsalehian A, Nakhjavani F, Bahador A, Jabal ameli F, Bigverdi R. Prevalence of MBL-producing Pseudomonas aeruginosa isolated from burn patients. Tehran University Medical Journal 2011; 68(10): 563-9.
  16. Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol 2005; 43(7): 3129-35.
  17. Golshani Z, Ahadi AM, Sharifzadeh A. Occurrence of Ambler Class B Metallo- β -Lactamase Gene in Imipenem-Resistant Pseudomonas Aeruginosa Strains Isolated from Clinical Samples. Zahedan J Res Med Sci 2014; 16(2): 6-9.
  18. Hammerum AM, Toleman MA, Hansen F, Kristensen B, Lester CH, Walsh TR, et al. Global spread of New Delhi metallo-?-lactamase 1. The Lancet Infectious Diseases 2010; 10(12): 829-30.
  19. Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, et al. Emergence of NDM-1 metallo-beta-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother 2011; 55(8): 3929-31.
  20. Huang YT, Chang SC, Lauderdale TL, Yang AJ, Wang JT. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-beta-lactamase genes in Taiwan. Diagn Microbiol Infect Dis 2007; 59(2): 211-6.
  21. Wikler MA, Cockerill FR, Udley MN, Craig WA, liopoulos GM, cht DW, et al. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical and Laberatory Standards Intitute 2006; 26(2): 1-65.
  22. Grody WW, Nakamura RM, Kiechle FL, Strom C. Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory. New York, NY: Academic Press; 2009.
  23. Wang H, Chen M, Ni Y, Liu Y, Sun H, Yu Y, et al. Antimicrobial resistance among clinical isolates from the Chinese Meropenem Surveillance Study (CMSS), 2003-2008. Int J Antimicrob Agents 2010; 35(3): 227-34.
  24. Gill MM, Usman J, Kaleem F, Hassan A, Khalid A, Anjum R, et al. Frequency and antibiogram of multi-drug resistant Pseudomonas aeruginosa. J Coll Physicians Surg Pak 2011; 21(9): 531-4.
  25. Norozi F, Kalantar D, Mansoouri SH, Moradi M, Alipour E, Orangi M. Detection of Imipenem resistance and beta-lactamase enzymes MBL in clinical isolates of Pseudomonas aeruginosa in Burn Hospital Center in Shiraz. Iranian Journal of Infectious Diseases 2010; 15(49): 37-42.
  26. Doosti M, Ramazani A, Garshasbi M. Identification and characterization of metallo-beta-lactamases producing Pseudomonas aeruginosa clinical isolates in University Hospital from Zanjan Province, Iran. Iran Biomed J 2013; 17(3): 129-33. [In Persian].
  27. Walsh TR. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005; 11 (Suppl 6): 2-9.
  28. Shahcheraghi F, Nikbin VS, Shooraj F, Shafiei M. Investigation of blaIMP-1, blaVIM-1 and blaSPM-1 MBL Genes among Clinical Strains of Pseudomonas aeruginosa Isolated from Imam Khomeini Hospital, Tehran, Iran. Pajoohandeh Journal 2009; 14(2): 67-72. [In Persian].
  29. Farzana R, Shamsuzzaman S, Mamun KZ. Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. J Infect Dev Ctries 2013; 7(3): 161-8.
  30. Al-Agamy MH, Shibl AM, Zaki SA, Tawfik AF. Antimicrobial resistance pattern and prevalence of metallo-betalactamases in Pseudomonas aeruginosa from Saudi Arabia. African Journal of Microbiology Research 2011; 5(30): 5528-33.