طراحی روش جدید محاسبه‌ی پهنای متوسط لاین در تصاویر پالس فیلد ژل الکتروفورز جهت آشکارسازی و استخراج لاین

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی پزشکی، دانشکده‌ی پزشکی و کمیته‌ی تحقیقات دانشجویی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

2 استادیار، مرکز تحقیقات بیولوژی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

3 دانشیار، گروه میکروب‌شناسی، دانشکده‌ی پزشکی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

4 دانشیار، گروه آمار زیستی و اپیدمیولوژی، مرکز تحقیقات توسعه‌ی اجتماعی و ارتقای سلامت، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران

چکیده

مقدمه: مقاله‌ی حاضر روش جدیدی را برای محاسبه‌ی پهنای متوسط لاین در تصاویر پالس فیلد ژل الکتروفورز (Pulsed field gel electrophoresis یا PFGE) جهت آشکارسازی و استخراج لاین‌ها نشان داد. اگرچه مطالعاتی پیرامون آشکارسازی لاین‌ها بر اساس پروجکشن- پروفایل ‏(‏Projection profiles‏) ‏گزارش شده، اما هنوز یک روش اتوماتیک با خطای کم انجام نگرفته است. پهنای متوسط لاین، مهم‌ترین پارامتر برای انجام اتوماتیک پردازش تصاویر PFGE می‌باشد. این پژوهش با هدف استفاده از روش چگالی طیف توان برای محاسبه‌ی پهنای متوسط لاین انجام شد.روش‌ها: ابتدا بر اساس چگالی طیف توان، پردازش تصاویر PFGE انجام گردید. الگوریتم پیشنهادی با استفاده از 10 تصویر PFGE بهبود داده شد و سپس برای تست از 20 تصویر دیگر استفاده گردید که در مجموع شامل 300 لاین بود. تصاویر با استفاده از دستگاه ژل الکتروفورز میدان پالسی مدل Bio-Rad واقع در آزمایشگاه میکروب‌شناسی دانشگاه علوم پزشکی کرمانشاه تهیه شد.یافته‌ها: استفاده از روش چگالی طیف توان در مقایسه با روش تقاطع خط افقی، 6/99 درصد از خطای آشکارسازی مراکز لاین را کاهش می‌دهد.نتیجه‌گیری: با توجه به این ‌که پارامتر پهنای متوسط لاین در چندین مرحله برای آشکارسازی و استخراج لاین‌ها مورد استفاده قرار گرفت، استفاده از روش چگالی طیف توان می‌تواند فرایند استخراج لاین را بهبود بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Method for Calculating Lane Average Width on the Pulsed Field Gel Electrophoresis (PFGE) Images for Lane Detection and Extraction Problem

نویسندگان [English]

  • Mohammad Rezaei 1
  • Mahmood Amiri 2
  • Parviz Mohajeri 3
  • Mansour Rezaei 4
1 MSc Student, Department of Biomedical Engineering, School of Medicine AND Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
2 Assistant Professor, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
3 Associate Professor, Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
4 Associate professor, Department of Biostatistics, Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
چکیده [English]

Background: We aimed to a new method to calculate the lane average width on the pulsed field gel electrophoresis (PFGE) images for lane detection and extraction problem. Although some studies are reported for lane detection based on vertical projection profile, they are not automatic with low error. Average width of lane is the most important parameter that is required for automatic image processing of PFGE images. This research with the aim of using the power spectrum density to calculate the lane average width was carried out.Methods: First, based on the power spectral density, PFGE images were processed. The proposed algorithm was trained using 10 PFGE images and then evaluated for 20 PFGE images which totally consisted of 300 lanes. These images were developed using Bio-Rad model of PFGE in Microbiology Laboratory of Kermanshah University of Medical Sciences, Iran.Findings: The power spectrum density procedure in contrast to intersection of the horizontal lane yields decreased 99.61% of calculation error for lane detection.Conclusion: Considering the lane average width is used in several stages for lane detection and extraction procedure, it can be concluded that the power spectrum density improves the process of lane extraction significantly.

کلیدواژه‌ها [English]

  • Power spectrum density
  • Average Lane width
  • Pulsed field gel electrophoresis (PFGE)
  1. Birren B, Lai E. Pulsed field gel electrophoresis: A practical guide. San Diego, CA: Academic Press; 1993.
  2. Hoelzel AR, Dover GA. Molecular genetic ecology: In focus. Oxford, UK: Oxford University Press; 1992.
  3. Pizzonia J. Electrophoresis gel image processing and analysis using the KODAK 1D software. Biotechniques 2001; 30(6): 1316-20.
  4. Maramis C, Delopoulos A. Efficient quantitative information extraction from PCR-RFLP gel electrophoresis images. Proceedings of 20th International Conference on Pattern Recognition (ICPR); 2010 Aug 23-26; Istanbul, Turkey.
  5. Blatter A, Reich E. Qualitative and quantitative HPTLC methods for quality control of Stephania tetrandra. J Liq Chromatogr Relat Technol 2005; 27(13): 2087-100.
  6. Schibli A, Reich E. Modern TLC: A key technique for identification and quality control of botanicals and dietary supplements. JPC J Planar Chromatogr Mod TLC 2005; 18(101): 34-8.
  7. Akbari A, Albregtsen F, Jakobsen KS. Automatic lane detection and separation in one dimensional gel images using continuous wavelet transform. Anal Methods 2010; 2(9): 1360-71.
  8. Wong RTF, Flibotte S, Corbett R, Saeedi P, Jones SJM, Marra MA, et al. LaneRuler: automated lane tracking for DNA electrophoresis gel images. Automation Science and Engineering, IEEE Transactions on 2010; 7(3): 706-8.
  9. Sousa AV, Aguiar R, Mendonca A, Campilho A. Automatic lane and band detection in images of thin layer chromatography. In: Campilho A, Kamel M, editors. Image analysis and recognition. New York, NY: Springer; 2004. p. 158-65.
  10. Machado AMC, Campos MFM, Siqueira AM, de Carvalho OSF. An iterative algorithm for segmenting lanes in gel electrophoresis images. Proceedings X Brazilian Symposium on Computer Graphics and Image Processing; 1997 Oct 14-17; Campos do Jordao, Brezil. p. 140-6.
  11. Park SC, Na IS, Han TH, Kim SH, Lee GS. Lane detection and tracking in PCR gel electrophoresis images. Comput Electron Agr 2012; 83: 85-91.
  12. Dhanasekaran D, Bagan KB. High speed pipelined architecture for adaptive median filter. European Journal of Scientific Research 2009; 29(4): 454-60.
  13. Wheelock AM, Buckpitt AR. Software-induced variance in two-dimensional gel electrophoresis image analysis. Electrophoresis 2005; 26(23): 4508-20.
  14. Kaczmarek K, Walczak B, de Jong S, Vandeginste BG. Preprocessing of two-dimensional gel electrophoresis images. Proteomics 2004; 4(8): 2377-89.
  15. Otnes RK, Enochson L, Maqusi M. Applied time series analysis. vol. 1. New York, NY: Wiley; 1978. p. 449.
  16. Stoica P, Moses RL. Introduction to spectral analysis. Upper Saddle River, NJ: Prentice Hall; 1997.
  17. Chui CK. An introduction to wavelets. San Diego, CA: Academic Press; 1992.
  18. Chai T, Draxler R. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Dev 2014; 7: 1525-34.