بررسی اثر محیط فعال شده توسط پلاسما بر زیست‌پذیری رده‌های سلولی سرطان سینه (MDA-MB-231) و دهانه‌ی رحم (Hela)

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 پژوهشکده‌ی لیزر و پلاسما، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، پژوهشکده‌ی لیزر و پلاسما، دانشگاه شهید بهشتی، تهران، ایران

3 استاد، پژوهشکده‌ی لیزر و پلاسما، دانشگاه شهید بهشتی، تهران، ایران

4 دانشیار، گروه فارماکولوژی، دانشکده‌ی علوم پزشکی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مقدمه: پلاسما به دو روش مستقیم و غیر مستقیم برای درمان سلول‌های سرطانی به کار می‌رود. درمان مستقیم سلول‌ها یا بافت‌ها از طریق تابش مستقیم پلاسما صورت می‌گیرد، اما روش غیر مستقیم درمان توسط محیط فعال شده با تابش پلاسما برای از بین بردن سلول‌های سرطانی اسفاده می‌شود.روش‌ها: در این مطالعه‌ی تجربی، ابتدا شاخص‌های پلاسما مانند گونه‌های فعال و دما ارزیابی گردید و سپس اثرات محیط فعال شده توسط پلاسما با زمان‌های پردازش مختلف و ترکیب‌های گازی هلیوم و هلیوم + 5/0 درصد اکسیژن بر روی دو رده‌ی سلولی MDA-MB-231 و Hela به ترتیب مربوط به سرطان سینه و دهانه‌ی رحم مورد بررسی قرار گرفت. به منظور بررسی اثر انتخابی پلاسما، این روش بر روی سلول‌های نرمال فیبروبلاست نیز آزمایش شد. آنالیزهای به کار رفته شامل طیف‌سنجی گسیل نوری (Optical emission spectrometry یا OES) و تست MTT بود.یافته‌ها: فاصله‌ی 1 سانتی‌متری نمونه و نازل جت پلاسما و ولتاژ کاری 5 کیلوولت جت پلاسما، حالت بهینه برای انجام آزمایش‌ها بود. همچنین، افزایش زمان پردازش محیط و زمان بین درمان و آنالیز، موجب کاهش زیست‌پذیری سلول‌های سرطانی شد. محیط فعال شده توسط پلاسما، زیست‌پذیری سلول‌های سرطانی را نسبت به سلول‌های نرمال، به میزان بیشتری کاهش داد.نتیجه‌گیری: محیط فعال شده توسط پلاسما، از روش‌های جدید و چالش‌‌برانگیزی است که اثرات سمی انتخابی برای از بین بردن سلول‌های سرطانی دارد. استفاده از این محیط، روش‌های استفاده از پلاسمای سرد اتمسفری را برای درمان سرطان، به عنوان ابزاری جهت شیمی درمانی گسترش داده است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Plasma-Activated Medium on the Viability of Breast (MDA-MB-231) and Cervical (Hela) Cancer Cell Lines

نویسندگان [English]

  • Mahya Aminraya-Jezeh 1
  • Mohammad Reza Khani 2
  • Babak Shokri 3
  • Hassan Niknejad 4
1 Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
2 Assistant Professor, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
3 Professor, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
4 Associate Professor, Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده [English]

Background: Plasma is used in two direct and indirect methods for treating cancer cells. Direct treatment of cells or tissues is carried out with irradiation of plasma, but in indirect treatment, the medium activated by plasma radiation is used to decrease cancer cell growth.Methods: In this experimental study, the plasma parameters such as active species and temperature were evaluated, and then the effects of plasma-activated medium in different treatment times and gas composition of helium/helium + 0.5% oxygen were investigated on two cancer cell lines of Hela and MDA-MB-231. Moreover, to evaluate the selectivity effects of the plasma-activated medium, the viability of normal fibroblast cell lines was investigated after direct and indirect treatments. Analyses used in this study were optical emission spectroscopy (OES) and MTT assay.Findings: The optimal state for the experiments was 1 cm distance between the sample and the nozzle of the plasma jet and the voltage of 5 kV. Moreover, increasing the time of treatment of the medium and interval time between treatment and analysis caused decreasing in cancer cells viability. The plasma-activated medium also reduced the viability of cancer cells more than that of normal cells.Conclusion: Plasma-activated medium is a new and challenging method, which has a selective toxicity to destroy cancer cells. Based on the results, cold atmospheric plasma could be an effective and alternative method for cancer therapy.

کلیدواژه‌ها [English]

  • Reactive oxygen species
  • Cell lines
  • Cell viability
  • Spectroscopy
  1. Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, et al. Causes of death among cancer patients. Ann Oncol 2017; 28(2): 400-7.
  2. Abdollahzadeh R, Moodi M, Khanjani N. Investigating the mental experience of patients suffering from cancer. Jundishapur J Chronic Dis Care 2017; 6(3): e57685.
  3. Shademani M, Nassiri Koopaei N, Shirzad Yazdi N, Azizian H, Mousavi Z, Salimi M, et al. Anti-proliferative effects of new synthesized hydrazone derivatives on breast, colon and hepatic cancer cells. Koomesh 2018; 20(4): 725-30. [In Persian].
  4. Niknejad H, Yazdanpanah G, Ahmadiani A. Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer. Cell Tissue Res 2016; 363(3): 599-608.
  5. Niknejad H, Yazdanpanah G. Anticancer effects of human amniotic membrane and its epithelial cells. Med Hypotheses 2014; 82(4): 488-9.
  6. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer 2011; 105(9): 1295-301.
  7. Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, et al. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J Phys D Appl Phys 2014; 47(28): 285403.
  8. Yan D, Sherman JH, Cheng X, Ratovitski E, Canady J, Keidar M. Controlling plasma stimulated media in cancer treatment application. Appl Phys Lett 2014; 105(22): 224101.
  9. Yan D, Talbot A, Nourmohammadi N, Cheng X, Canady J, Sherman J, et al. Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci Rep 2015; 5: 18339.
  10. Lukes P, Dolezalova E, Sisrova I, Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sourc Sci Tech 2014; 23(1): 015019.
  11. Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Processes Polym 2007; 4(9): 777-88.
  12. Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem Plasma P 2003; 23(1): 1-46.
  13. Kim JY, Kim SO, Wei Y, Li J. A flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy. Appl Phys Lett 2010; 96(20): 203701.
  14. Kaushik NK, Uhm H, Ha Choi E. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells. Appl Phys Lett 2012; 100(8): 084102.
  15. Ja Kim S, Min Joh H, Chung TH. Production of intracellular reactive oxygen species and change of cell viability induced by atmospheric pressure plasma in normal and cancer cells. Appl Phys Lett 2013; 103(15): 153705.
  16. Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One 2014; 9(5): e98652.
  17. Kim GJ, Kim W, Kim KT, Lee JK. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl Phys Lett 2010; 96(2): 021502.
  18. Vandamme M, Robert E, Dozias S, Sobilo J, Lerondel S, et al. Response of human glioma U87 xenografted on mice to non thermal plasma treatment. Plasma Medicine 2011; 1(1): 27.
  19. Arjunan KP, Friedman G, Fridman A, Clyne AM. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J R Soc Interface 2012; 9(66): 147-57.
  20. Simsek E, Imir N, Aydemir EA, Gokturk RS, Yesilada E, Fiskin K. Caspase-mediated apoptotic effects of ebenus boissieri barbey extracts on human cervical cancer cell line HeLa. Pharmacogn Mag 2017; 13(50): 254-9.
  21. Kong JN, He Q, Wang G, Dasgupta S, Dinkins MB, Zhu G, et al. Guggulsterone and bexarotene induce secretion of exosome-associated breast cancer resistance protein and reduce doxorubicin resistance in MDA-MB-231 cells. Int J Cancer 2015; 137(7): 1610-20.
  22. Santhanam RK, Ahmad S, Abas F, Safinar I, I, Rukayadi Y, Tayyab AM, et al. Bioactive constituents of zanthoxylum rhetsa bark and its cytotoxic potential against B16-F10 melanoma cancer and normal human dermal fibroblast (HDF) cell lines. Molecules 2016; 21(6): 652.
  23. Jimenez Perez ZE, Mathiyalagan R, Markus J, Kim YJ, Kang HM, Abbai R, et al. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int J Nanomedicine 2017; 12: 709-23.
  24. Guerra FS, Oliveira RG, Fraga CAM, Mermelstein CDS, Fernandes PD. ROCK inhibition with Fasudil induces beta-catenin nuclear translocation and inhibits cell migration of MDA-MB 231 human breast cancer cells. Sci Rep 2017; 7(1): 13723.
  25. Utsumi F, Kajiyama H, Nakamura K, Tanaka H, Mizuno M, Ishikawa K, et al. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 2013; 8(12): e81576.
  26. Judee F, Fongia C, Ducommun B, Yousfi M, Lobjois V, Merbahi N. Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids. Sci Rep 2016; 6: 21421.
  27. Mashayekh S, Rajaee H, Akhlaghi M, Shokri B, Hassan ZM. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10). Phys Plasmas 2015; 22(9): 093508.
  28. Ishaq M, Evans MD, Ostrikov KK. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 anti-oxidant system. Biochim Biophys Acta 2014; 1843(12): 2827-37.
  29. Keidar M. Plasma for cancer treatment. Plasma Sourc Sci Tech 2015; 24(3): 033001.
  30. Cairns RA, Harris I, McCracken S, Mak TW. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol 2011; 76: 299-311.