بررسی عملکرد miRNA در بیماری سیستیک فیبروزیس

نوع مقاله : مقاله مروری

نویسندگان

1 دانشیار، مرکز تحقیقات بیماری‌های تنفسی اطفال، پژوهشکده‌ی سل و بیماری‌های ریوی، مرکز آموزشی، پژوهشی و درمانی سل و بیماری‌های ریوی بیمارستان دکتر مسیح دانشوری، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

2 استادیار، مرکز تحقیقات مایکوباکتریولوژی، پژوهشکده‌ی سل و بیماری‌های ریوی، مرکز آموزشی، پژوهشی و درمانی سل و بیماری‌های ریوی بیمارستان دکتر مسیح دانشوری، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

3 استاد، مرکز تحقیقات مایکوباکتریولوژی، پژوهشکده‌ی سل و بیماری‌های ریوی، مرکز آموزشی، پژوهشی و درمانی سل و بیماری‌های ریوی بیمارستان دکتر مسیح دانشوری، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران

چکیده

سیستیک فیبروزیس (Cystic fibrosis یا CF) نوعی اختلال اتوزومی مغلوب است که به علت جهش‌هایی در ژن تنظیم کننده‌ی رسانایی میان غشایی سیستیک فیبروزیس (Cystic fibrosis transmembrane conductance regulator یا CFTR) ایجاد می‌شود. عدم تنظیم miRNA در بسیاری از بیماری‌های ریوی نظیر CF گزارش شده است. کاهش یا افزایش سطح miRNA اثرات مهمی بر پاسخ‌های ایمنی ذاتی در مسیر تنفسی CF دارد، مانند اختلال در عملکرد پاسخ التهابی ایجاد شده به واسطه‌ی نوتروفیل‌ها و ماکروفاژها و نیز التهاب مزمن که باعث تخریب و فیبروز بافت ریه در بیماران مبتلا به CF می‌شود. وجود یک نشانگر زیستی اختصاصی برای تشخیص پیشرفت بیماری ریوی، بررسی التهاب و عملکرد سلولی می‌تواند گزینه‌ی مناسبی برای تشخیص CF باشد. برای مثال، miRNAهای موجود در خلط، می‌توانند جهت بررسی عملکرد ریوی، بسیار ایده‌آل باشند. در حال حاضر، از miRNA در درمان یا تشخیص بالینی CF استفاده نمی‌شود، اما مطالعات زیادی miRNAها را به عنوان نشانگرهای زیستی بالقوه برای این بیماری بیان می‌کنند. این مطالعات، پیشنهاد می‌کنند که درمان‌های بر پایه‌ی miRNA که باعث افزایش بیان CFTR می‌شوند، می‌توانند گزینه‌ی بسیار مناسبی برای تنظیم میزان CFTR در آزمایش‌های بالینی بر روی بیماران CF باشند. در این مقاله‌ی مروری، پس از تشریح گروه‌های مختلف miRNA و مکانیسم عملکرد آن جهت تنظیم بیان پروتئین، مطالعات گوناگون مرتبط با miRNA در سیستیک فیبروزیس بررسی گردید. همچنین، امکان به کارگیری miRNA به عنوان نشانگر زیستی در بیماری سیستیک فیبروزیس و نقش آن در روش‌های درمانی مختلف بر پایه‌ی miRNA مورد بحث قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of miRNA Functionality in Cystic Fibrosis

نویسندگان [English]

  • Maryam Hassanzad 1
  • Jalaledin Ghanavi 2
  • Ali Akbar Velayati 3
1 Associate Professor, Pediatric Respiratory Diseases Research Center (PRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Assistant Professor, Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Professor, Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده [English]

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The irregularities in miRNA expression have been reported in many pulmonary diseases, including CF. An increase or a decrease in miRNA levels has important influences on innate immune responses in respiratory tract of the patients with CF, such as impaired function of the inflammatory responses caused by neutrophils and macrophages, as well as chronic inflammation, which can lead to degradation and fibrosis of the lung tissue in these patients. The presence of a specific biomarker for diagnosis of pulmonary disease, inflammation, and cellular function can be a good candidate for diagnosis of CF. For example, sputum miRNAs can be ideal for checking pulmonary function. Although miRNA is not currently used for treatment or clinical diagnosis of CF, many studies have suggested miRNAs as potential biomarkers for the disease. miRNA-based treatments, that enhance the expression of CFTR, can be a very suitable option for adjusting CFTR levels in clinical trials on patients with CF. In this review article, after describing different miRNA groups, and its mechanism of action for regulation of protein expression, various studies related to miRNA in CF were investigated. In addition, the possibility to apply miRNA as a biomarker in CF, and its role in different miRNA-based therapeutic approaches were discussed.

کلیدواژه‌ها [English]

  • Cystic fibrosis
  • Lung
  • miRNA
  1. Mirtajani SB, Farnia P, Hassanzad M, Ghanavi J, Farnia P, Velayati AA. Geographical distribution of cystic fibrosis; the past 70 years of data analyzis. Biomed Biotechnol Res J 2017; 1(2): 105-12.
  2. Sonneville F, Ruffin M, Guillot L, Rousselet N, Le RP, Corvol H, et al. New insights about miRNAs in cystic fibrosis. Am J Pathol 2015; 185(4): 897-908.
  3. Hassanzad M, Farnia P, Ghanavi J, Parvini F, Saif S, Velayati AA. TNFalpha -857C/T and TNFR2 +587 T/G polymorphisms are associated with cystic fibrosis in Iranian patients. Eur J Med Genet 2018 . [Epub ahead of print].
  4. Hassanzad, M., Farnia, P., Samadani, A., Sayedi, S., Velayati, A. Bone mineral density and cystic fibrosis: A review. Int J Pediatr, 2019; 7(7): 9701-10.
  5. Zemanick ET, Sagel SD, Harris JK. The airway microbiome in cystic fibrosis and implications for treatment. Curr Opin Pediatr 2011; 23(3): 319-24.
  6. Cohen-Cymberknoh M, Kerem E, Ferkol T, Elizur A. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax 2013; 68(12): 1157-62.
  7. Rowe SM, Clancy JP. Advances in cystic fibrosis therapies. Curr Opin Pediatr 2006; 18(6): 604-13.
  8. Sherrard LJ, Tunney MM, Elborn JS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet 2014; 384(9944): 703-13.
  9. Hoffman LR, Ramsey BW. Cystic fibrosis therapeutics: The road ahead. Chest 2013; 143(1): 207-13.
  10. Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis 2019; 6(2): 97-108.
  11. Volkova N, Moy K, Evans J, Campbell D, Tian S, Simard C, et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J Cyst Fibros 2019. [Epub ahead of print].
  12. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science 2001; 291(5507): 1304-51.
  13. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
  14. Finishing the euchromatic sequence of the human genome. Nature 2004; 431(7011): 931-45.
  15. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res 2012; 22(9): 1760-74.
  16. Bahrambeigi V, Rafiee L, Haghjooy Javanmard S, Salehi R, Tajedini MH, Daraei A. Comparison of miR-211 expression in murine melanoma cell line and murine melanoma tumor by real-time polymerase chain reaction. J Isfahan Med Sch 2012; 30(27): 1522-8. [In Persian].
  17. Ehtesham N, Sharifi M, Khorvash F, Kheirollahi M. The effect of beta interferon on the expression of miR-145 in patients with multiple sclerosis. J Isfahan Med Sch 2016; 34(396): 1013-8. [In Persian].
  18. Ehtesham N, Modi M, Kheirollahi M. miRNA, biogenesis and mechanisms of regulations. J Isfahan Med Sch 2014; 32(296): 1259-68. [In Persian].
  19. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102-14.
  20. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet 2011; 43(3): 242-5.
  21. Dweep H, Sticht C, Gretz N. In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions. Curr Genomics 2013; 14(2): 127-36.
  22. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Front Genet 2014; 5: 23.
  23. Bardin P, Sonneville F, Corvol H, Tabary O. Emerging microRNA Therapeutic Approaches for Cystic Fibrosis. Front Pharmacol 2018; 9: 1113.
  24. Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O'Neill SJ, McElvaney NG, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 2010; 184(4): 1702-9.
  25. Fesen K, Silveyra P, Fuentes N, Nicoleau M, Rivera L, Kitch D, et al. The role of microRNAs in chronic pseudomonas lung infection in Cystic fibrosis. Respir Med 2019; 151: 133-8.
  26. Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 2011; 286(13): 11604-15.
  27. Bhattacharyya S, Kumar P, Tsuchiya M, Bhattacharyya A, Biswas R. Regulation of miR-155 biogenesis in cystic fibrosis lung epithelial cells: Antagonistic role of two mRNA-destabilizing proteins, KSRP and TTP. Biochem Biophys Res Commun 2013; 433(4): 484-8.
  28. Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol 2014; 50(6): 1144-55.
  29. Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, et al. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015; 46(5): 1350-60.
  30. Wat D. Cystic Fibrosis in the Light of New Research. London, UK: IntechOpen; 2015. p. 233.
  31. Megiorni F, Cialfi S, Cimino G, De Biase RV, Dominici C, Quattrucci S, et al. Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros 2013; 12(6): 797-802.
  32. McKiernan PJ, Molloy KP, Cryan SA, McElvaney NG, Greene CM. X Chromosome-encoded MicroRNAs Are Functionally Increased in Cystic Fibrosis Monocytes. Am J Respir Crit Care Med 2018; 197(5): 668-70.
  33. Weldon S, McNally P, McAuley DF, Oglesby IK, Wohlford-Lenane CL, Bartlett JA, et al. miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 2014; 190(2): 165-74.
  34. Genz B, Coleman MA, Irvine KM, Kutasovic JR, Miranda M, Gratte FD, et al. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-beta-induced collagen expression in hepatic stellate cells. Sci Rep 2019; 9(1): 8541.
  35. Pierdomenico AM, Patruno S, Codagnone M, Simiele F, Mari VC, Plebani R, et al. microRNA-181b is increased in cystic fibrosis cells and impairs lipoxin A4 receptor-dependent mechanisms of inflammation resolution and antimicrobial defense. Sci Rep 2017; 7(1): 13519.
  36. Tazi MF, Dakhlallah DA, Caution K, Gerber MM, Chang SW, Khalil H, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy 2016; 12(11): 2026-37.
  37. Krause K, Kopp BT, Tazi MF, Caution K, Hamilton K, Badr A, et al. The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. J Cyst Fibros 2018; 17(4): 454-61.
  38. Pier GB. CFTR mutations and host susceptibility to Pseudomonas aeruginosa lung infection. Curr Opin Microbiol 2002; 5(1): 81-6.
  39. Tsuchiya M, Kalurupalle S, Kumar P, Ghoshal S, Zhang Y, Lehrmann E, et al. RPTOR, a novel target of miR-155, elicits a fibrotic phenotype of cystic fibrosis lung epithelium by upregulating CTGF. RNA Biol 2016; 13(9): 837-47.
  40. Gillen AE, Gosalia N, Leir SH, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 2011; 438(1): 25-32.
  41. Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 2013; 49(4): 544-51.
  42. Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One 2011; 6(10): e26601.
  43. Jundi K, Greene CM. Transcription of interleukin-8: How altered regulation can affect cystic fibrosis lung disease. Biomolecules 2015; 5(3): 1386-98.
  44. Amato F, Seia M, Giordano S, Elce A, Zarrilli F, Castaldo G, et al. Gene mutation in microRNA target sites of CFTR gene: a novel pathogenetic mechanism in cystic fibrosis? PLoS One 2013; 8(3): e60448.
  45. Amato F, Tomaiuolo R, Nici F, Borbone N, Elce A, Catalanotti B, et al. Exploitation of a very small peptide nucleic acid as a new inhibitor of miR-509-3p involved in the regulation of cystic fibrosis disease-gene expression. Biomed Res Int 2014; 2014: 610718.
  46. Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 2012; 109(33): 13362-7.
  47. Viart V, Bergougnoux A, Bonini J, Varilh J, Chiron R, Tabary O, et al. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J 2015; 45(1): 116-28.
  48. Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, et al. A peptide nucleic acid against MicroRNA miR-145-5p Enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules 2017; 23(1).
  49. Lutful KF, Ambalavanan N, Liu G, Li P, Solomon GM, Lal CV, et al. MicroRNA-145 antagonism reverses TGF-beta inhibition of F508del CFTR correction in airway epithelia. Am J Respir Crit Care Med 2018; 197(5): 632-43.
  50. Zarrilli F, Amato F, Morgillo CM, Pinto B, Santarpia G, Borbone N, et al. Peptide nucleic acids as miRNA target protectors for the treatment of cystic fibrosis. Molecules 2017; 22(7): E1144.
  51. Kumar P, Bhattacharyya S, Peters KW, Glover ML, Sen A, Cox RT, et al. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells. Gene Ther 2015; 22(11): 908-16.
  52. Ruffin M, Voland M, Marie S, Bonora M, Blanchard E, Blouquit-Laye S, et al. Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis. Biochim Biophys Acta 2013; 1832(12): 2340-51.
  53. Sonneville F, Ruffin M, Coraux C, Rousselet N, Le RP, Blouquit-Laye S, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun 2017; 8(1): 710.
  54. Oglesby IK, Agrawal R, Mall MA, McElvaney NG, Greene CM. miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6. Mol Cell Pediatr 2015; 2(1): 1.
  55. Jaswani P, Prakash S, Dhar A, Sharma RK, Prasad N, Agrawal S. MicroRNAs involvement in renal pathophysiology: A bird's eye view. Indian J Nephrol 2017; 27(5): 337-41.
  56. Sanfiorenzo C, Ilie MI, Belaid A, Barlesi F, Mouroux J, Marquette CH, et al. Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC. PLoS One 2013; 8(1): e54596.
  57. Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, et al. Toward the blood-borne miRNome of human diseases. Nat Methods 2011; 8(10): 841-3.
  58. Ranade AR, Cherba D, Sridhar S, Richardson P, Webb C, Paripati A, et al. MicroRNA 92a-2*: A biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol 2010; 5(8): 1273-8.
  59. Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World J Biol Chem 2014; 5(4): 437-56.
  60. Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: Mirandering around the rules. Int J Biochem Cell Biol 2010; 42(8): 1316-29.
  61. Davies JC, Alton EW. Gene therapy for cystic fibrosis. Proc Am Thorac Soc 2010; 7(6): 408-14.
  62. Markou A, Liang Y, Lianidou E. Prognostic, therapeutic and diagnostic potential of microRNAs in non-small cell lung cancer. Clin Chem Lab Med 2011; 49(10): 1591-603.
  63. Dannhoffer L, Blouquit-Laye S, Regnier A, Chinet T. Functional properties of mixed cystic fibrosis and normal bronchial epithelial cell cultures. Am J Respir Cell Mol Biol 2009; 40(6): 717-23.
  64. Cook NL, Pereira TN, Lewindon PJ, Shepherd RW, Ramm GA. Circulating microRNAs as noninvasive diagnostic biomarkers of liver disease in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 2015; 60(2): 247-54.
  65. Montanini L, Smerieri A, Gulli M, Cirillo F, Pisi G, Sartori C, et al. miR-146a, miR-155, miR-370, and miR-708 Are CFTR-dependent, predicted FOXO1 regulators and change at onset of CFRDs. J Clin Endocrinol Metab 2016; 101(12): 4955-63.