مدل‌سازی ریاضی سرطان و طراحی پروتکل شیمی‌‌درمانی بهینه با استفاده از معیار پایداری لیاپانوف

نوع مقاله : مقاله های پژوهشی

نویسندگان

1 استاد، گروه طراحی جامدات، دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشجوی کارشناسی ارشد، گروه طراحی جامدات، دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

مقدمه: مدل‌‌های ریاضی رشد و تکثیر سلولی می‌‌توانند به شبیه‌سازی رفتار سلول‌‌های سرطانی در تقابل با سلول‌‌های سالم، دستگاه ایمنی بدن و دارو‌های شیمیایی مورد استفاده در درمان سرطان و نیز تخمی‌ن و اندازه‌گیری می‌زان سمی‌ت دارو‌ها و تأثیرات آن‌‌ها بر روی بافت‌‌های سالم بپردازند. یکی از اهداف مهم مدل‌سازی ریاضی سرطان، یافتن نحوه و ساختار رشد سلول‌‌های سرطانی و تعیین یک الگوی کنترلی مناسب برای تزریق دارو به بیماران است. روش متداول برای طراحی پروتکل درمانی بهینه، استفاده از روش کلاسیک کنترل بهینه است.در این مطالعه به بررسی به کار گیری روش لیاپانوف برای این کار پرداختیم.روش‌ها: در این پژوهش، مدل ریاضی جدیدی برای توصیف تغییرات جمعیت سلول‌‌های سرطانی در فاز‌های مختلف چرخه‌ی تکثیر سلولی، جمعیت سلول‌‌های ایمنی، غلظت و میزان سمیت دارو پیشنهاد و با به کارگیری قضیه‌ی پایداری لیاپانوف، یک پروتکل درمانی بهینه طراحی شد.یافته‌ها: نتایج شبیه سازی نشان داد که پس از هفت نوبت شیمی‌درمانی طی پنجاه روز تعداد سلول‌‌های سرطانی به حدود صفر رسیده و تا حدود شش ماه پس از آخرین نوبت شیمی‌درمانی، سلول‌‌های سرطانی در سطح پایینی قرار خواهند داشت.نتیجه‌گیری: در این پژوهش، مدل ریاضی جدیدی برای توصیف یک سیستم سرطانی پیشن‌هاد و با به کارگیری قضیه‌ی پایداری لیاپانوف، یک پروتکل درمانی بهینه طراحی شد. نتایج شبیه‌سازی، نابودی سلول‌‌های سرطانی در کمتر از دو ماه و عدم رشد دوباره‌ی آن‌‌ها تا شش ماه پس از دوره‌ی درمان را نشان داد. به منظور پیشگیری از رشد دوباره‌ی سلول‌‌های سرطانی، می‌‌توان با واکسن درمانی پارامتر‌های سیستم را تغییر و نقطه‌ی تعادل مطلوب را پایدار نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical Modeling of Cancer and Designing an Optimal Chemotherapy Protocol Based on Lyapunov Stability Criteria

نویسندگان [English]

  • Ali Ghaffari 1
  • Kianoosh Azizi 2
  • Mohammadreza Amini 2
1 Professor, Department of Solid Mechanics and Design, School of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 MSc Student, Department of Solid Mechanics and Design, School of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Background: Mathematical models can provide insights into the growth of cancerous cells and their interaction with healthy cells, immune cells, and chemotherapeutic drugs that are used in cancer therapy. Moreover, mathematical models have been developed to aid in describing the mechanisms of availability of cytotoxic drugs and their effects on healthy cell populations. Finding a desirable treatment protocol for patients is one of the most important objectives of mathematical modeling. The conventional method in designing the optimal chemotherapy strategies is making use of the classical optimal control theory.Methods: In this study, a new mathematical model was developed to analyze dynamics of cancerous cells in different phases of cell cycle, immune cells, chemotherapeutic drug concentration, and toxicity. Finally, Lyapunov stability theory was applied to design an optimal treatment protocol.Findings: The results of simulation showed that after 7 times of chemotherapy during 50 days, all cancerous cells would be killed. In addition, the disease would remain in this desirable state up to 6 months.Conclusion: In this research, a new mathematical model for describing the dynamics of a cancerous system has been proposed. An optimal treatment protocol has also been designed applying Lyapunov stability theory. Using such a protocol, the population of cancerous cells would be decreased to zero. This state can be maintained for 6 months. In addition, by applying vaccine therapy the growth of cancerous cells could be prevented. Vaccine therapy changes the parameters of the system and stabilizes tumor free equilibrium point.

کلیدواژه‌ها [English]

  • Optimal treatment protocol
  • Mathematical modeling of cancer
  • Delay differential equation
  • Lyapunov stability theory
  1. Eisen MM. Mathematical Models in Cell Biology and Cancer Chemotherapy (Lecture Notes in Biomathematics. New York, NY: Springer; 1979.
  2. Knolle H. Cell kinetic modelling and the chemotherapy of cancer. New York, NY: Springer-Verlag; 1988.
  3. Swierniak A, Kimmel M, Smieja J. Mathematical modeling as a tool for planning anticancer therapy. Eur J Pharmacol 2009; 625(1-3): 108-21.
  4. Kimmel M, wierniak A. Using control theory to make cancer chemotherapy benefical from phase dependence and resistant to drug resistance. J Math Biosci 2006.
  5. Ghaffari A, Karimi M. Optimal Design of Chemotherapy Drug Protocol for Cancer Treatment Based on a New Mathematical Model. International Journal of Modeling, Identification and Control 2008; 5(2): 146-53.
  6. Ghaffari A, Nasserifar N. Mathematical Modeling and Lyapunov-based Drug Administration in Cancer Chemotherapy. Iranian Journal of Electrical & Electronic Engineering 2009; 5(3).
  7. Webb GF. A cell population model of periodic chemotherapy treatment. Biomedical Modeling and Simulation 1992; 83-92.
  8. Kheifetz Y, Kogan Y, Agur Z. Long-range predictability in models of cell populations subjected to phase-specifc drugs: Growth-rate approximation using properties of positive compact operators. Mathematical Models & Methods in the Applied Sciences 2006; 16: 1155-72.
  9. Birkhead BG, Rankin EM, Gallivan S, Dones L, Rubens RD. A mathematical model of the development of drug resistance to cancer chemotherapy. Eur J Cancer Clin Oncol 1987; 23(9): 1421-7.
  10. Swan GW. Tumor growth models and cancer chemotherapy. In: Yakovlev AY, avlova L, anin LG, editors. Biomathematical Problems in Optimization of Cancer Radiotherapy.New York, NY: CRC Press; 1987. p. 91-179.
  11. Kirschner D, Panetta J. Modeling immunotherapy of the tumor - immune Interaction. J Math Biol 1998; 37: 235-52.
  12. Villasana M. A delay differential equation model for tumor growth [PhD Thesis]. California: Claremont Graduate University, USA; 2002.
  13. Kozusko F. A mathematical model of invitro cancer cell growth and treatment with the antimitoic agent curacin A. A, Math Biosci 2001; 170: 1-16.
  14. Burden T, Ernstberger J, Renee Fister K. Optimal control applied to immunotherapy. Discrete and continuous dynamical systems-series B 2004; 4(1): 135-46.
  15. Fister KR, Donnelly JH. Immunotherapy: an optimal control theory approach. Math Biosci Eng 2005; 2(3): 499-510.
  16. Liu W, Hillen T, Freedman HI. A mathematical model for M-phase specific chemotherapy including the G0-phase and immunoresponse. Math Biosci Eng 2007; 4(2): 239-59.
  17. MacKey MC. Cell kinetic status of haematopoietic stem cells. Cell Prolif 2001; 34(2): 71-83.
  18. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 1994; 56(2): 295-321.
  19. Jankovic M. Control Lyapunov-Razumikhin functions for time delay systems. Proceedings of the 38th IEEE Conference on Decision and Control; 1999 Dec 7-10; Phoenix, USA. p. 1136-41.
  20. Jankovic M. Extension of control Lyapunov functions to time-delay systems. Proceedings of the 39th IEEE Conference on Decision and Control; 2000 dec; Sydney, Australia. P. 4403-08.
  21. Slotine JJ, Li W. Applied Nonlinear Control. Prentice Hall; 1991.